Квантовые компьютеры что это такое


Просто о сложном: что такое квантовый компьютер и зачем он нужен

Евгений Глушков

Студент шестого курса МФТИ, инженер лаборатории искусственных квантовых систем, создатель и редактор ресурса Make It Quantum.

До квантовой в ходу была классическая теория электромагнитного излучения. В 1900 году немецкий ученый Макс Планк, который сам в кванты не верил, считал их вымышленной и чисто теоретической конструкцией, был вынужден признать, что энергия нагретого тела излучается порциями — квантами; таким образом, предположения теории совпали с экспериментальными наблюдениями. А пять лет спустя великий Альберт Эйнштейн прибегнул к этому же подходу при объяснении фотоэффекта: при облучении светом в металлах возникал электрический ток! Вряд ли Планк с Эйнштейном могли предположить, что своими работами закладывают основы новой науки — квантовой механики, которой будет суждено до неузнаваемости преобразить наш мир, и что в XXI веке ученые вплотную приблизятся к созданию квантового компьютера.

Вначале квантовая механика позволила объяснить структуру атома и помогла понять происходящие внутри него процессы. По большому счету сбылась давняя мечта алхимиков о превращении атомов одних элементов в атомы других (да, даже в золото). А знаменитая формула Эйнштейна E=mc2 привела к появлению атомной энергетики и, как следствие, атомной бомбы.

Дальше — больше. Благодаря работам Эйнштейна и английского физика Поля Дирака во второй половине XX века был создан лазер — тоже квантовый источник сверхчистого света, собранного в узкий пучок. Исследования лазеров принесли Нобелевскую премию не одному десятку ученых, а сами лазеры нашли свое применение почти во всех сферах человеческой деятельности — от промышленных резаков и лазерных пушек до сканеров штрихкодов и коррекции зрения. Примерно в то же время шли активные исследования полупроводников — материалов, с помощью которых можно легко управлять протеканием электрического тока. На их основе были созданы первые транзисторы — они в дальнейшем стали главными строительными элементами современной электроники, без которой сейчас мы уже не представляем свою жизнь.

Быстро и эффективно решать многие задачи позволило развитие электронных вычислительных машин — компьютеров. А постепенное уменьшение их размеров и стоимости (в связи с массовым производством) проложило компьютерам дорогу в каждый дом. С появлением интернета наша зависимость от компьютерных систем, в том числе и для коммуникации, стала еще сильнее.

Ричард Фейнман

Зависимость растет, постоянно растут вычислительные мощности, но настала пора признать, что, несмотря на свои впечатляющие возможности, компьютеры оказались не в состоянии решить все задачи, которые мы готовы перед ними ставить. Одним из первых об этом начал говорить знаменитый физик Ричард Фейнман: еще в 1981 году на конференции он заявил, что на обычных компьютерах принципиально невозможно точно рассчитать реальную физическую систему. Все дело в ее квантовой природе! Эффекты микромасштаба легко объясняются квантовой механикой и из рук вон плохо — привычной нам классической механикой: она описывает поведение больших объектов. Тогда-то в качестве альтернативы Фейнман предложил использовать для расчетов физических систем квантовые компьютеры.

Что же такое квантовый компьютер и в чем его отличие от компьютеров, к которым мы привыкли? Все дело в том, как мы представляем себе информацию.

Если в обычных компьютерах за эту функцию отвечают биты — нули и единички, — то в квантовых компьютерах им на смену приходят квантовые биты (сокращенно — кубиты). Сам кубит — вещь довольно простая. У него по-прежнему два основных значения (или состояния, как любят говорить в квантовой механике), которые он может принимать: 0 и 1. Однако благодаря свойству квантовых объектов под названием «суперпозиция» кубит может принимать все значения, которые являются комбинацией основных. При этом его квантовая природа позволяет ему находиться во всех этих состояниях одновременно.

В этом и заключается параллельность квантовых вычислений с кубитами. Все случается сразу — уже не нужно перебирать все возможные варианты состояний системы, а это именно то, чем занимается обычный компьютер. Поиск по большим базам данных, составление оптимального маршрута, разработка новых лекарств — лишь несколько примеров задач, решение которых способны ускорить во множество раз квантовые алгоритмы. Это те задачи, где для поиска правильного ответа нужно перебрать огромное количество вариантов.

Кроме того, для описания точного состояния системы теперь не нужны огромные вычислительные мощности и объемы оперативной памяти, ведь для расчета системы из 100 частиц достаточно 100 кубитов, а не триллионов триллионов бит. Более того, с ростом числа частиц (как в реальных сложных системах) эта разница становится еще существеннее.

Одна из переборных задач выделялась своей кажущейся бесполезностью — разложение больших чисел на простые множители (то есть делящиеся нацело только на самих себя и единицу). Это называется «факторизация». Дело в том, что обычные компьютеры умеют довольно быстро перемножать числа, пусть даже и весьма большие. Однако с обратной задачей разложения большого числа, получившегося в результате перемножения двух простых чисел, на исходные множители обычные компьютеры справляются очень плохо. Например, чтобы разложить на два сомножителя число из 256 цифр, даже самому мощному компьютеру понадобится не один десяток лет. А вот квантовый алгоритм, который может решить эту задачу за несколько минут, придумал в 1997 году английский математик Питер Шор.

С появлением алгоритма Шора перед научным сообществом встала серьезная проблема. Еще в конце 1970-х годов, основываясь на сложности задачи факторизации, ученые-криптографы создали алгоритм шифрования данных, получивший повсеместное распространение. В частности, с помощью этого алгоритма стали защищать данные в интернете — пароли, личную переписку, банковские и финансовые транзакции. И после многолетнего успешного использования вдруг оказалось, что зашифрованная таким способом информация становится легкой мишенью для алгоритма Шора, запущенного на квантовом компьютере. Дешифровка с его помощью становится минутным делом. Радовало одно: квантовый компьютер, на котором можно было бы запустить смертоносный алгоритм, еще не был создан.

Тем временем по всему миру десятки научных групп и лабораторий стали заниматься экспериментальными исследованиями кубитов и возможностями создания из них квантового компьютера. Ведь одно дело — теоретически придумать кубит, и совсем другое — воплотить его в реальность. Для этого было необходимо найти подходящую физическую систему с двумя квантовыми уровнями, которые можно использовать в качестве базовых состояний кубита — нуля и единицы. Сам Фейнман в своей пионерской статье предлагал использовать для этих целей закрученные в разные стороны фотоны, но первыми экспериментально созданными кубитами стали в 1995 году захваченные в специальные ловушки ионы. За ионами последовали многие другие физические реализации: ядра атомов, электроны, фотоны, дефекты в кристаллах, сверхпроводящие цепи — все они отвечали поставленным требованиям.

Такое разнообразие имело свои достоинства. Подгоняемые острой конкуренцией, различные научные группы создавали все более совершенные кубиты и строили из них все более сложные схемы. Основных соревновательных параметров у кубитов было два: время их жизни и количество кубитов, которые можно было заставить работать сообща.

Время жизни кубитов задавало то, как долго в них хранилось хрупкое квантовое состояние. Это, в свою очередь, определяло, сколько вычислительных операций можно было выполнить с кубитом, пока он не «умер».

Для эффективной работы квантовых алгоритмов нужен был не один кубит, а хотя бы сотня, причем работающая вместе. Проблема заключалась в том, что кубиты не очень любили соседствовать друг с другом и выражали протест драматическим уменьшением своего времени жизни. Чтобы обойти эту неуживчивость кубитов, ученым приходилось идти на всяческие ухищрения. И все же на сегодняшний день ученым удалось заставить работать вместе максимум один-два десятка кубитов.

Так что, на радость криптографам, квантовый компьютер — все еще дело будущего. Хотя уже совсем не такого далекого, как могло когда-то казаться, ведь к его созданию активно подключаются как крупнейшие корпорации вроде Intel, IBM и Google, так и отдельные государства, для которых создание квантового компьютера — вопрос стратегической важности.

Не пропустите лекцию:

theoryandpractice.ru

Квантовый компьютер — что это простыми словами, принцип действия

Очередной привет всем читателям моего блога! Вчера в новостях проскочила в очередной раз пара сюжетов о «квантовом» компьютере. Мы из школьного курса физики знаем, что квант — это некая одинаковая порция энергии, еще есть словосочетание «квантовый скачок», то есть  мнгновенный переход с некоего уровня энергии на еще более высокий уровень.. Давайте вместе разбираться, что такое квантовый компьютер, и что нас всех ожидает, когда появится эта чудо машина

Я впервые начал интересоваться  этой темой при просмотре  фильмов про Эдварда Сноудена. Как известно, этот американский гражданин собрал несколько террабайт  конфидециальной информации (компромата)  о деятельности спецслужб США,  хорошенько зашифровал ее и выложил в Интернет. «Если, сказал он, со мной что-нибудь случиться, информация будет расшифрована и станет таким образом доступна для всех.»

Расчет был на то, что информация эта «горячая», будет актуальна еще лет десять. А расшифровать ее можно современными вычислительными мощностями то же не меньше, чем через десять или больше  лет. Квантовый же  компьютер  по ожиданиям разработчиков справится с этой задачей минут за двадцать пять.. Криптографы в панике. Вот такой «квантовый» скачок нас скоро  ожидает, друзья.

Принципы работы квантового компьютера для чайников

Раз мы уж заговорили о квантовой физике, давайте немножко поговорим о ней. Я не буду углубляться в дебри друзья. Я ведь «чайник», а не квантовый физик. Лет сто назад Энштейн опубликовал свою теорию относительности. Все умные люди того времени удивлялись, как много в ней парадоксов и невероятных вещей.  Так вот, все пародоксы Энштейна, описывающие законы нашего мира   —  просто  невинный лепет пятилетнего ребенка по сравнению с тем,  что твориться на уровне атомов и молекул.

Сами «квантовые физики», описывающие явления происходящие на уровнях электронов и молекул говорят примерно так: » Это невероятно. Этого не может быть. Но это так. Не спрашивайте нас, как это все работает. Мы не знаем, как и почему. Мы просто наблюдаем. Но это работает. Это доказано экспериментально.  Вот формулы, зависимости и записи экспериментов.»

Так в чем же разница между обычным и квантовым компьютером? Ведь обычный компьютер тоже работает на электричестве, а электричество —  это куча очень маленьких частиц — электронов?

Наши с Вами компьютеры работают по принципу или «Да» или «Нет».  Если есть ток в проводе, это «Да»или «Единица». Если тока в проводе  «Нет», то это «Ноль». Вариант  значения «1 «и «0» есть единица хранения информации под названием «Бит».. Один байт это 8 бит и так далее и так далее…

Теперь представьте  ваш процессор, на котором 800 миллионов таких «проводов» на каждом из которых за секунду  появляется и исчезает  такой  вот «ноль» или «единица». И вы мысленно можете вообразить, как он обрабатывает информацию. Вы сейчас читаете текст, но на самом деле это совокупность нулей и единиц.

Путем перебора  и  вычислений Ваш компьютер обрабатывает  Ваши запросы в Яндексе, ищет нужные  до тех пор, пока не решит задачу и  путем исключения  не  докопается до нужной Вам . Выводит на монитор шрифты, картинки в читаемом для нас виде… Пока надеюсь ничего сложного? А картинка  — это тоже нули и единицы.

Представьте теперь  себе друзья на секунду модель нашей солнечной системы.  В центре Солнце, вокруг него  летит Земля. Мы знаем, что она в определенный момент всегда находится в определенной точке пространства и через секунду  она уже  улетит на тридцать километров  дальше.

Так вот, модель атома то же планетарная, там атом  тоже вращается вокруг ядра. Но ДОКАЗАНО, друзья, умными парнями в очках, что атом в отличии от Земли одновременно и всегда находится во всех местах..Везде и нигде одновременно.   И назвали  они это замечательное явление «суперпозицией». Для того, чтобы познакомится поближе и другими  явлениями квантовой физики, предлагаю глянуть научно-популярный фильм, где простым языком рассказывается о сложном и в довольно  оригинальной форме.

Продолжим. И вот на смену «нашему» биту приходит квантовый бит. Его еще называют «Кубит». У него то же всего два исходных  состояния «ноль» и «единица». Но, так как природа его «квантовая», то он может  ОДНОВРЕМЕННО принимать все  возможные промежуточные значения. И одновременно находиться в них. Теперь значения не надо последовательно вычислять, перебирать.., долго искать в базе. Они известны уже заранее, сразу. Вычисления идут параллельно.

Первые «квантовые» алгоритмы  для  математических вычислений были придуманы еще  математиком из Англии Питером Шором в 1997 году. Когда он показал их миру, все шифровальщики здорово напряглись, так как существующие шифры «раскалываются» этим алгоритмом за несколько минут.. Вот только компьютеров, работающих по квантовому алгоритму тогда еще не было.

С тех пор с одной стороны идет работа по созданию физической системы, в которой бы работал квантовый бит. То есть «железа». А с другой стороны уже придумывают защиту от  квантового взлома и расшифровки данных.

А что сейчас ? А вот так выглядит квантовый процессор под микроскопом  на 9 кубит от фирмы Google.

Неужели они нас обогнали? 9 кубит или по «старому» 15 бит, это не так много пока еще. Плюс дороговизна, масса технических проблем и короткое время «жизни» квантов. Но вспомните что сначала были 8 битные, потом появились 16 битные процессоры… Так будет и с этими …

Квантовый компьютер в России — миф или реальность?

А мы что же? А мы то же не за печкой родились. Вот нарыл фото первого российского Кубита под микроскопом. Тут правда он один.

Тоже выглядит как  некая «петля»,  в которой происходит нечто  для нас пока не познанное. Отрадно думать, если наши при поддержке государства разрабатывают свое. Так что отечественные разработки это уже не миф. Вот оно, наше будущее. Каким оно будет, посмотрим.

Последние новости о квантовом компьютере России мощностью 51 кубит

Вот новости этого лета. Наши дядечки (честь им и хвала!) разработали самый мощный в мире (!) квантовый (!) компьютер  51 кубит(!)т. Самое интересное то, что до этого Google анонсировало свой компьютер на 49 кубит. И по их оценкам они должны были его закончить через месяц или около того. А наши решили показать уже готовый, свой квантовый процессор на 51 кубит.. Браво! Вот какая идет гонка. Нам хотя бы не отставать. Потому что ожидается  большой прорыв в науке, когда  эти системы заработают. Вот фото человека, который  представлял нашу разработку на «квантовом» международном форуме.

Фамилия этого ученого — Михаил Лукин. Сегодня его имя в центре внимания. Невозможно создать такой проект в одиночку, мы это понимаем. Он и его команда создали на сегодня самый мощный в мире(!) квантовый компьютер или процессор. Вот что говорят по этому поводу  компетентные лица:

«Квантовый компьютер функционирующий, он гораздо страшнее атомной бомбы, — отмечает сооснователь Российского квантового центра Сергей Белоусов. — Он (Михаил Лукин) сделал систему, в которой больше всего кубитов. На всякий случай. На данный момент, я думаю, это более чем в два раза больше кубитов, чем у кого-либо другого. И он специально сделал 51 кубит, а не 49. Потому что Google всё время говорили, что сделают 49».

Впрочем, сам Лукин и руководитель квантовой лаборатории Google Джон Мартинес конкурентами или соперниками себя не считают. Учёные убеждены, что их главным соперником является природа, а основной целью — развитие технологий и их внедрение для продвижения человечества на новый виток развития.

«Неправильно думать об этом, как о гонке, — справедливо считает Джон Мартинес. — Настоящая гонка у нас с природой. Потому что это действительно сложно — создать квантовый компьютер. И это просто захватывающе, что кому-то удалось создать систему с таким большим количеством кубитов. Пока 22 кубита — это максимум, что мы могли сделать. Хоть мы и использовали всё своё волшебство и профессионализм».

Да, все это очень  интересно. Если вспомнить аналогии, когда изобрели транзистор, никто не мог знать, что на этой технологии через 70 лет будут работать компьютеры. В одном только  современном процессоре количество их достигает 700 миллионов..Первый компьютер весил много тонн и занимал большие площади. Но персональные компьютеры все равно  появились — много позже…

Я думаю, что пока нам в ближайшее время не стоит ждать появления в наших магазинах устройств такого класса. Многие их ждут. Особенно добытчики криптовалют  много спорят по этому поводу. С надеждой взирают на него ученые, и с пристальным вниманием — военные. Потенциал этой разработки как мы понимаем, до конца не ясен.

Ясно только, что когда это все заработает, оно потащит вперед за собой всю наукоемкую промышленность.Постепенно появятся новые технологии, новые отрасли, новый софт.. Время покажет. Только  бы не подвел  человеков  свой собственный квантовый компьютер, данный нам при рождении — это наша голова. Так что, пока не спешите выкидывать на помойку свои гаджеты. Они долго Вам еще послужат.  Пишите, если статья была интересной. Заходите чаще. До свидания!

fast-wolker.ru

Существуют ли квантовые компьютеры на самом деле? — Meduza

Просто: В СМИ опять поднялась шумиха про квантовые компьютеры будущего.

Сложнее: В Google объявили, что принадлежащий компании квантовый компьютер D-Wave решил поставленную задачу в 100 миллионов раз быстрее, чем обычный компьютер. Эта новость стала поводом для нового обсуждения одного из самых ожидаемых технологических прорывов. Разработку настоящего квантового компьютера можно сравнить с мечтой о лекарстве от рака или болезни Альцгеймера, термоядерной энергии и колонизации Марса. «Медуза» попросила научного журналиста Сергея Немалевича объяснить, существуют ли уже настоящие квантовые компьютеры и чем они лучше обычных. 

Просто: Потому что они очень быстрые.

Сложнее: В не очень далеком будущем квантовые компьютеры могут стать необходимостью. Потребности человечества в производительности компьютерных процессоров уже сейчас обгоняют развитие классической электроники. Есть знаменитый закон Мура, описывающий скорость роста производительности процессоров: число транзисторов на кристалле интегральной схемы удваивается каждые два года. Сейчас этот закон уже не совсем выполняется — число транзисторов удваивается раз в 2,5 года. Так или иначе, производительность традиционных процессоров не может расти до бесконечности. Никто не знает, когда понадобится качественный скачок, но рано или поздно он обязательно понадобится. И создание квантового компьютера, способного решать некоторые важные вычислительные задачи гораздо быстрее обычного, — одно из возможных направлений развития. 

Просто: В обычных информация хранится в битах — нулях или единицах, а в квантовых — в кубитах. Кубиты могут как бы находиться одновременно в двух состояниях: содержать ноль и единицу сразу. Благодаря этому теоретически квантовый компьютер может работать быстрее.

Сложнее: Как понятно из названия, квантовый компьютер использует феномены квантовой механики. В микромире, живущем по законам квантовой механики, возможны явления, немыслимые в привычном нам макромире. Например, частица может находиться в суперпозиции — сразу в двух состояниях. Есть популярная метафора: представьте подброшенную в воздух монету, которая одновременно и орел, и решка. Грубо говоря, примерно так же устроена работа кубита — основной единицы хранения информации в квантовом компьютере. 

Другой эффект называется квантовой зацепленностью: состояния двух частиц могут быть взаимосвязаны и меняться одновременно, даже если эти частицы находятся в разных уголках галактики. Благодаря квантовой зацепленности кубиты можно собирать в связанные между собой наборы. Если набор из N классических бит хранит последовательность из N нулей и единиц, то в регистре из N кубит записано несравнимо больше информации — суперпозиция всех возможных последовательностей из N нулей и единиц.

Поймав монету, мы видим, что она выпала либо орлом, либо решкой — вероятность 50 на 50. Так же, измеряя состояние кубита, мы получим ноль, либо один; только — в отличие от монеты — вероятности получения каждого из двух значений не равны. Вот эти вероятности и «записаны» в суперпозиции. А если измерить значение квантового регистра, получится только одна последовательность нулей и единиц, но, опять же, с некоторой вероятностью, которая — в виде коэффициента — хранилась в исходном квантовом состоянии.

Квантовая ячейка памяти содержит не конкретную единицу информации, а набор вероятностей получения любой возможной единицы информации при измерении. И если классический процессор за один такт изменяет последовательность из N нулей и единиц, то квантовый процессор изменяет набор из 2 в степени N вероятностей — в сущности, совершая экспоненциально больше работы. Это свойство называется квантовым параллелизмом, и теоретически квантовый процессор может работать экспоненциально быстрее классического. 

Просто: Не особо.

Сложнее: На самом деле, почти никогда не получается. Во-первых, квантовые вычисления не дают абсолютно точного решения задачи — ответ оказывается правильным только с некоторой вероятностью, и коррекция возможной ошибки отнимает дополнительные вычислительные ресурсы. Во-вторых, когда имеешь дело не с понятными нулями и единицами, а с их громоздкими суперпозициями, приходится исхитряться, даже чтобы реализовать простейшие логические операции. Построение квантовых алгоритмов — теоретическая область, развивающаяся параллельно с попытками инженеров создать для них квантовые компьютеры. Успехов в этом направлении достигнуто больше, в частности, известно, что любой классический алгоритм можно перепрограммировать в квантовый, но число квантовых алгоритмов, которые будут заведомо работать намного быстрее классических (то есть возникнет «квантовое ускорение»), относительно невелико. Самые известные из них — алгоритм Гровера для решения задачи перебора и алгоритм Шора, позволяющий раскладывать число на сомножители. 

Просто: Да, но такие простые, что их квантовость не дает никаких преимуществ. 

Сложнее: Квантовых компьютеров, которые способны решать любую задачу, пока не существует. Большинство исследований сейчас направлено не столько на построение действующих квантовых компьютеров, сколько на отработку базовых технологий, в первую очередь — создания кубитов. Время от времени на регистрах из нескольких кубитов запускаются какие-нибудь квантовые алгоритмы и решаются простенькие задачи, вроде разложения числа 143 на простые множители или осуществления перебора из четырех вариантов. Поскольку базовых проблем остается еще очень много, создавать системы больше, чем из пары десятков кубитов, не имеет особого смысла, а у устройств с меньшим количеством кубитов нет заметных преимуществ перед классическими компьютерами. Особняком здесь стоят устройства канадской компании D-Wave, последнее из которых — с 1152 кубитами внутри — наделало недавно столько шума.

Просто: Квантовые системы очень чувствительны: чуть что, они лишаются своего квантового волшебства, а заодно и всех полезных свойств.

Сложнее: Любое «наблюдение» или «измерение», а в сущности, почти любой контакт с внешней средой приводит к тому, что квантовая система становится классической, это явление называется декогеренцией. Представьте подброшенную монетку, которая от столкновения с любой молекулой воздуха или даже от случайно упавшего на нее взгляда немедленно выпадает орлом или решкой. А уж если в системе несколько запутанных кубит, удержать их от декогеренции еще сложнее — это иногда сравнивают с попыткой поставить множество карандашей вертикально на кончики остро отточенных грифелей. Качественная изоляция квантовой системы от внешней среды — не только инженерно сложная, но и дорогостоящая задача. Даже первые прототипы квантовых вычислителей с несколькими кубитами по размерам напоминают компьютеры середины прошлого века и стоят миллионы долларов. Сейчас разрабатывается несколько конкурирующих технологий реализации кубитов, и самая главная задача — как можно дольше удержать их от декогеренции. 

Просто: Да, они продвинулись дальше других, но в основном в области маркетинга — хорошо продают свои продукты. 

Сложнее: Не особо. Канадская компания D-Wave имеет удивительную историю. В 1999 году физик-инженер и чемпион мира по борьбе джиу-джитсу Джорди Роуз прочитал популярную книгу про квантовые вычисления и увлекся этой идеей. О практической реализации квантовых компьютеров тогда еще мало кто помышлял, но Роуз умудрился привлечь финансирование на создание прототипа квантового вычислителя — не имея ни ноу-хау, ни технологий. Почти все разработки D-Wave вела чужими руками, зато каждый созданный прототип упаковывался в черную коробку (точнее — шкаф) с красивым логотипом, который потом громко представляли на рынке как действующий квантовый компьютер. Научное сообщество морщилось, однако коммерческие гиганты, в том числе Lockheed Martin и Google, устройства D-Wave покупали, не жалея десятков миллионов долларов — на всякий случай. Споры о том, что именно находится в черных ящиках с логотипом D-Wave — и можно ли это назвать квантовым компьютером, не утихают до сих пор.

Просто: Легче сказать, чем они похожи — в них есть кубиты и их почему-то называют квантовыми компьютерами. В остальном почти ничего общего.

Сложнее: Хотя в этих устройствах тоже есть кубиты, они выстроены в специфическую прихотливую архитектуру. В сущности, D-Wave умеет решать одну-единственную оптимизационную задачу, которая соответствует естественной эволюции лежащей в ее основе квантовой системы. Машину нельзя непосредственно заставить сложить два числа, выполнить простейшую логическую операцию, на ней нельзя запустить квантовый алгоритм Шора. Все, что она умеет делать — симулировать саму себя, как если бы для решения задачки из школьного учебника про движение двух поездов навстречу друг другу использовалась система, состоящая их двух настоящих поездов и секундомера. Любопытно, что долго никто не мог даже доказать, что работа D-Wave действительно использует явления квантового мира. Убедиться в этом воочию невозможно (как уже говорилось, квантовые эффекты нельзя наблюдать — они сразу становятся классическими), так что единственный способ — удостовериться, что устройство способно сделать то, на что не способны классические системы, например, работать намного быстрее них. И именно это наконец удалось сделать исследователям из Google.

Просто: Правда. Как и то, что улитка доползет до соседней комнаты быстрее вас, если вы решите попутно обогнуть экватор.

Сложнее: Это правда, но только если сравнивать работу D-Wave с работой классического алгоритма, имитирующего то, что происходит внутри D-Wave по обычным физическим законам. Возвращаясь к примеру с задачкой про поезда, такой алгоритм бы буквально моделировал движение двух поездов, всякий раз проверяя, не встретились ли они. Разумеется, есть способ решить ту же задачу проще и быстрее — подставив нужные значения переменных в несложную формулу. Так же и с D-Wave: машина решила задачу поиска минимума с помощью так называемого квантового отжига, команда Google сравнила результат с работой алгоритма имитации квантового отжига, и да — получилось в сто миллионов раз быстрее. Но для того же вычисления есть другой классический алгоритм Селби, который выполняет его быстрее, чем D-Wave. Об этом, кстати, прямо говорится в статье специалистов Google. Другими словами, D-Wave работает быстрее, когда решает одну узкоспециальную задачу и только если сравнивать ее с работой одного неоптимального классического алгоритма. С практической точки зрения, никакого смысла в этом нет, вожделенного квантового ускорения тоже не наблюдается.

Просто: Нет. Скорее Google убедился, что не надули его.

Сложнее: Отнюдь, все эти подробности явно описаны в статье. Если кто-то кого-то и надул, то это журналисты, поспешившие сообщить о технологической революции. А Google нужно было убедиться, что купленная ими машина хотя бы и впрямь является квантовой — для этого нужно было сравнить скорость ее работы именно с неоптимальной классической имитацией квантового отжига. Теперь никто не сомневается, что в работе D-Wave участвует квантовое явление, а если точнее — так называемый туннельный эффект. Но никто не сомневается, что системе D-Wave не суждено совершить настоящую революцию в квантовых вычислениях — она слишком специфически устроена, ее преимущества очень редко проявляются, с ней не работают уже придуманные квантовые алгоритмы. Скорее всего, по-настоящему большие новости придут не со стороны канадского стартапа, а от одной из сильных академических лабораторий, например, под руководством Джона Мартиниза в университете Санта-Барбары или Криса Монро в университете Мэриленда.

Автор: Сергей Немалевич

meduza.io

Как это работает? | Квантовый компьютер

Квантовый компьютер — это вычислительное устройство, которое использует явления квантовой механики для передачи и обработки данных. Идея квантовых вычислений была независимо предложена Юрием Маниным и Ричардом Фейнманом в начале 80-х годов прошлого века. С тех пор была проделана колоссальная работа по созданию квантового компьютера. Однако полноценный универсальный квантовый компьютер все еще является гипотетическим устройством, возможность разработки которого связана с серьёзным развитием квантовой теории. К настоящему моменту были созданы единичные экспериментальные системы с алгоритмом небольшой сложности. Как же работает квантовый компьютер — об этом в сегодняшнем выпуске!

Основное отличие квантового компьютера от классического заключается в представлении информации. В обычных компьютерах, работающих на основе транзисторов и кремниевых чипов, для обработки информации используется бинарный код. Бит, как известно, имеет два базовых состояния — ноль и единицу, и может находиться только в одном из них. Что же касается квантового компьютера, то его работа основывается на принципе суперпозиции, а вместо битов используются квантовые биты, именуемые кубитами. У кубита также имеется два основных состояния: ноль и единица. Однако благодаря суперпозиции кубит может принимать значения, полученные путем их комбинирования, и находиться во всех этих состояниях одновременно. В этом заключается параллельность квантовых вычислений, то есть отсутствие необходимости перебирать все возможные варианты состояний системы. Кроме того, для описания точного состояния системы квантовому компьютеру не нужны огромные вычислительные мощности и объемы оперативной памяти, так как для расчета системы из 100 частиц достаточно лишь 100 кубитов, а не триллион триллионов бит.

Также стоит отметить, что изменение состояния определенного кубита в квантовом компьютере ведет к изменению состояния других частиц, что является еще одним отличием от обычного компьютера. И этим изменением можно управлять. Процесс работы квантового компьютера был предложен британским физиком-теоретиком Дэвидом Дойчем в 1995 году, когда он создал цепочку, способную выполнять любые вычисления на квантовом уровне. Согласно его схеме, для начала берется набор кубитов и записываются их начальные параметры. Затем выполняются необходимые преобразования с использованием логических операций и записывается полученное значение, которое и является результатом, выдаваемым компьютером. В роли проводов выступают кубиты, а преобразования совершают логические блоки.

По словам ученых, квантовые компьютеры будут в миллионы раз мощнее нынешних. Уже сейчас описаны самые разнообразные алгоритмы работы квантового компьютера, и даже разрабатываются специальные языки программирования. По прогнозу исследователей Cisco Systems, полноценный рабочий квантовый компьютер появится к середине следующего десятилетия. Лидером в этой области является Япония: более 70% всех исследований приходится на эту страну.

hi-news.ru


Смотрите также