Материнские платы 2 х процессорные


Материнская плата на 2 процессора - как выбрать

03.11.2018

На сегодняшний день никого не удивишь процессорами 6, а то и с 8 ядрами, но материнские платы, поддерживающие больше одного процессора, до сих пор редкость и используют их в основном для сборки серверов. Что из себя представляет материнская плата с двумя разъемами и какие модели лучше приобретать, разберем ниже.

Описание

Материнские платы (МП), поддерживающие работу двух процессоров одновременно, предназначаются для компьютеров, которые подвергаются серьезным нагрузкам и от них требуется увеличенная скорость отклика. Архитектура МП слегка отличается от обычных и ее элементы обеспечиваются мощной защитой от перегрузок.

Достоинства материнских плат:

  • Мощность. Позволяют обрабатывать большие потоки данных и отлично подойдут как для установки в серверные станции, таки и игровые ПК, повышенной мощности;
  • Надежность. Из-за чрезмерных нагрузок, ее элементы более устойчивы и защищены, по сравнению с одноядерными МП;

Недостатки:

  1. Стоимость. Процессор сам по себе штука не дешевая, а два процессора обойдутся пользователю в серьезную сумму денег. Кроме того, стоит учитывать тот факт, что МП с двумя разъемами, подойдет не каждый процессор;
  2. Два разъема требуют больше энергии. Соответственно, для эксплуатации МП понадобится блок питания большей мощности;
  3. Охлаждение. Несмотря на надежность элементов МП, для ее надежного функционирования требуется наличие мощного охлаждения. Недостаточное охлаждение может вывести из строя компьютер, при длительной эксплуатации и больших нагрузках;

Таким образом из всего вышесказанного можно сделать вывод, что МП с 2-мя разъемами вещь мощная, но дорогая.

Обратите внимание! Покупая процессор, например Intel Xeon e5450, обращайте внимание на совместимость с материнской платой.

Характеристики

При покупке МП с двумя ядрами следует понимать цель, с которой она будет эксплуатироваться. В основном такая покупка делается для сборки серверной станции, от которой требуется высокая мощность и оперативность в обработке информации. В таком случае, основными характеристиками на которые следует обращать внимание при покупке считаются:

  • Количество разъемов под оперативную память. Чем их больше, тем лучше;
  • Сокет. От него будет зависеть спектр процессоров, доступных к установке;
  • Наличие или отсутствие видеокарты. Если МП используется для сборки сервера – достаточно встроенной видеокарты. Игровым ПК важно иметь минимум один разъем под видеокарту, так как им недостаточно интегрированной версии;
  • Количество подключаемых жестких дисков;

В зависимости от этих показателей стоимость МП будет колебаться в широком диапазоне. При покупке имейте ввиду, что лучше слегка переплатить и купить плату помощнее, чем приобрести дешевое устройство и через пару лет менять его.

Отзывы

Ниже будет приведено несколько отзывов о материнских платах, поддерживающих работу 2-х процессоров одновременно.

Сергей Маркович. 29 лет. Город Москва.

Для своей серверной станции приобретал МП ASUS Z10PE-D8 WS. Поддерживает одновременную работу 8 плашек оперативной памяти. Объем памяти при полной комплектации равен 512 гигабайтам. К материнке подключают до 8 жестких дисков, что весьма неплохо. В комплектацию входят встроенная видеокарта, 2 сетевые карты и аудио карта. Надежный выбор для начинающих.

Антон Васильевич. 35 лет. Город Киров.

У нас на работе стоит мощная серверная станция, в которой в качестве материнской платы используется ASUS Z10PE D16WS. Мощная вещь, поддерживающая одновременную работу 16 разъемов по оперативную память. Количество слотов на ней по отношению с более старыми версиями уменьшено, но они модернизированы и работают быстрее. Охлаждение хорошее, претензий к работе сервера пока нет.

Так же вы можете прочитать статьи на темы: Материнская плата для сервера и Самая дорогая материнская плата

Материнская плата с двумя процессорами Ссылка на основную публикацию

wi-tech.ru

Два процессора на одной материнской плате

  • Intel Xeon E3* и i7 4770K — что лучше?

Вы думали когда нибудь о таком компьютере, где установлено два физических процессора? А четыре? Нет? Тогда сегодня я предлагаю вам познакомится с такими платами, а также постараюсь обьяснить, почему я себе не собирал такой супер компьютер.

Материнская плата с двумя процессорами предназначена в первую очередь для высокопроизводительных систем, но не стоит путать такие системы с игровыми. Дело в том, что играм, как не крути, но так много мощности не нужно, как два современных процессора.

Процессоры, которые предназначены для работы в паре имеют название Intel Xeon (это серверные модели, хотя их можно использовать и в обычных платах), хотя и один Xeon в серверных платах — не редкость.

Но суть не в этом, а в том что ксеоны современные (статью пишу в 2015 году) могут содержать до 18-ти ядер физических и 36 ядер виртуальных (технология гипертрейдинга, HT). Теперь все это умножаем на два, так процессоров на плате два. В итоге мы получаем очень мощный компьютер, который намного больше стоит обычного игрового компьютера.

Какой можно сделать вывод? Двухпроцессорные платы уже не стоит использовать для игровых компьютеров, мощности будет более чем достаточно, а цена всех компонентов просто заоблачная.

Ладно, теперь немного расскажу о самой работе такой системы.

Двухпроцессорная материнская плата, это обычная плата, которая имеет два гнезда (сокета) для двух процессоров (есть платы с четырьмя сокетами), которые разумеется должны быть одинаковые. Все это работает в паре так, будто это один процессор с несколькими ядрами, отличие только в том что реальных процессора — два.

Что в этом плохого для обычного пользователя? Плохого — ничего, а вот накладно — да. Накладно охлаждение, оно должно быть массивным, радиаторов должно быть два, и у каждого должен быть вентилятор. Это все требует кое каких навыков, чтобы вся эта конструкция не тянула за собой материнскую плату. Оперативная память кстати тоже используется не простая, а ECC — это такая специальная память, которая обеспечивает выявление ошибок и исправление их (простым языком это даром не нужно для обычного компьютера). Такие ошибки могут быть вызваны внешними факторами, и эта память ничто иное как хорошо усовершенствованный вариант контроля четности.

Вот например плата на два сокета от Asus Z9PE-D8 WS (это сокет 2011 на базе малоизвестного чипсета для обычных пользователей — Intel C602):

Сразу бросается в глаза то, что нужен специальный блок питания для серверных плат. Также можно заметить большее количество слотов PCI — это и так понятно, поддержка их увеличивается в два раза с двумя процессорами (даже логично). С памятью также само — ее всегда можно установить больше, чем на однопроцессорных платах.

Еще для вас будет неприятным моментом то, что далеко не все ксеоны поддерживают встроенное видео (для некоторых пользователей это критично), так как это больше удел обычных процессоров.

Некоторые программы на такой плате будут работать конечно быстрее, особенно когда уже разработчики учитывают многоядерные системы и включают в программу распараллеливание на все ядра. В таком случае действительно, программа которая выполняла задачу за 10 секунд на обычном компьютере, будет ее выполнять за 5 секунд на двухпроцессорном. Это я вообще к чему? К тому что для большинства задач обычных пользователей достаточно и декстопных процессоров (например четырех-ядерного i7 более чем достаточно).

Вместо этого всего я вам рекомендую посмотреть в сторону хорошего и быстрого SSD-накопителя, а если его поставить в RAID0 (это когда два накопителя работают как один, и все показатели скорости удваиваться) — то вы забудете о двухпроцессорной системе, но это просто мое скромное мнение.

Но вот еще есть такой момент, ксеоны могут стоить дешевле аналогичных декстопных моделей, учитывая то, что на многих платах вместо декстопного можно установить ксеон и сэкономить немного денег. Вот здесь я приводил пример — Intel Xeon E3* и i7 4770K — что лучше?.

Вернуться на главную!

shte.ru

Intel Xeon в двухпроцессорной конфигурации

Есть ли смысл на десктопе?

Некогда многопроцессорность была популярна не только в серверах, но и в старших моделях рабочих станций, и даже в самосборных компьютерах. Особенно массовое применение данной технологии связано с тем, что компания Intel обеспечила поддержку SMP в системах на базе процессоров Pentium (до двух процессоров без специальных архитектурных ухищрений) и усилила ее в Pentium Pro (можно было использовать до четырех процессоров). Настольные Pentium II вернулись на более низкий уровень (до двух процессоров), зато и стоили они недорого (причем в паре могли работать даже совсем бюджетные Celeron после небольшой доработки), что быстро сделало соответствующие системные платы пусть и не массовым в полном смысле этого слова, но широко распространенным товаром. Затем в гонку включилась и компания AMD, предложив пользователям свои двухпроцессорные решения для рабочих станций. И тут история в очередной раз повторилась — потребный для SMP-конфигураций Athlon MP можно было не приобретать, а самостоятельно «изготовить» из массового Athlon XP, что быстро привлекло пристальное внимание многих пользователей к двухсокетным платам на базе чипсетов AMD 760MP и 760MPX.

Позднее производители пришли к выводу, что простота получения SMP-систем из недорогих комплектующих сильно бьет по их же доходам, так что начали постепенно разделять массовое (один сокет, один процессор) и высокопроизводительное направление, вплоть до того, что бывали иногда моменты, когда они оказывались совершенно несовместимыми. Впрочем, делалось это во многом для получения дополнительной прибыли, но совсем не для того, чтобы совсем «придушить» направление. Так что часть энтузиастов к двухсокетным системам охладела, но лишь та, которой интересны были «переделки ради переделок» — пользователи, имеющие реальную потребность в высокой производительности, продолжали активно приобретать рабочие станции с двумя процессорами. Пик пришелся на первые Xeon и Opteron. А дальше — как отрезало.

Виной тому явился выпуск двухъядерных, а затем и четрехъядерных настольных процессоров. По сути своей для большинства задач CMP и SMP не сильно-то отличаются, зато сохранялась возможность использования «нормальных» настольных комплектующих. Опять же — и цена получалась более низкой. Разумеется, на каждый момент времени два сокета могли обеспечить вдвое больше ядер, чем один, однако требовалось это далеко не многим. Пользователи быстро убедились, что два ядра это практически всегда лучше, чем одно — даже если использовать однопоточные приложения, система как минимум становится куда более «отзывчивой» на действия пользователя, поскольку второе ядро как раз и обеспечивает необходимый запас ресурсов. А вот пользу из наличия четырех ядер на десктопе долгое время можно было извлечь лишь при использовании весьма специфического ПО, да и сейчас-то ситуация не сильно изменилась. Но даже если четырех ядер вам мало, не обязательно бежать за системой с двумя сокетами — в ближайшее время и Intel, и AMD собираются начать выпуск настольных шестиядерных процессоров. Ну можно будет (или, в случае AMD, уже сейчас можно) таких пару поставить, ну и что? Что вы собрались делать с двенадцатью вычислительными ядрами? :) В общем, подводя итог, рост количества ядер был крайне важен при переходе от одного к более чем одному, но чем дальше, тем менее интересен. Соответственно, и SMP-конфигурации были крайне нужны тогда, когда других способов получить более одного ядра не было, но быстро растеряли свою привлекательность по мере совершенствования CMP. Из сегодняшних успешных SMP-систем на десктопе на ум приходит разве что Apple Mac Pro, да и то — пол-года назад компания наступила на горло собственной песне, выпустив модификацию всего с одним «односокетным» Xeon серии 3500.

Однако все знают о существовании приложений, существенно ускоряющихся при любом увеличении количества ядер — просто потому, что некоторые задачи прекрасно распараллеливаются (часть — вообще на уровне алгоритмов, для некоторых же положительный эффект достигается за счет одновременного запуска одинаковых и не зависящих друг от друга кусков кода). Правда процент таких задач среди обычного «десктопного» ПО весьма мал. Или, все же, не мал? Вопрос интересный и до конца все еще не исследованный. Поэтому мы решили им заняться. Благо наша текущая методика тестирования процессоров на данный момент существенным образом ориентируется на настольные приложения как раз. И в рамках этих самых настольных систем демонстрирует неплохой прирост производительности при увеличении количества потоков вычисления (как путем использования CMP, так и, пусть в меньшей степени, за счет SMT в процессорах Intel). А что будет, если мы попробуем задействовать все существующие на данный момент технологии увеличения производительности: и SMT (т.е. возможность выполнять на одном ядре более одного потока вычислений — именно этим занимается Hyper-Threading), и CMP («многопроцессорность» за счет увеличения количества ядер в одном приборе), и SMP (установку нескольких процессоров)? Давайте посмотрим.

Конфигурация тестовых стендов

Процессор Core i7 860Core i7 Extreme 975Xeon L5520Xeon X5570
Название ядра LynnfieldBloomfieldBloomfieldBloomfield
Технология пр-ва 45 нм45 нм45 нм45 нм
Частота ядра (std/max), ГГц 2,8/3,47 3,33/3,62,26/2,53 2,93/3,33
Стартовый коэффициент умножения 21251722
Схема работы Turbo Boost5-4-1-12-1-1-12-1-1-13-3-2-2
Кол-во ядер/потоков вычисления 4/84/84/84/8
Кэш L1, I/D, КБ32/3232/3232/3232/32
Кэш L2, КБ4 x 2564 x 2564 x 2564 x 256
Кэш L3, КБ8192819281928192
Частота UnCore2,42,662,132,66
Оперативная память 2 x DDR3-13333 x DDR3-10663 x DDR3-10663 x DDR3-1333
QPI4,8 ГТ/с6,4 ГТ/с5,86 ГТ/с6,4 ГТ/с
Сокет LGA1156LGA1366LGA1366LGA1366
TDP 95 Вт130 Вт60 Вт95 Вт
Цена Н/Д(3) Н/Д(2) $293(6)$596(7)

Почему именно эти процессоры? Core i7 860 можно считать ныне разумным базовым уровнем — более дешевый процессор человек, реально заинтересованный в получении высокой производительности приобретать не станет, а более дорогие и на самом деле более дорогие (причем существенно). Core i7 Extreme 975 — на данный момент максимум для настольных систем. Да, достаточно дорого (хотя вполне сравнимо с ценой одного Xeon семейства 5500), зато быстрее пока никак не получить. Ну и два Xeon, протестированных как по одному, так и в паре — основные герои сегодняшнего тестирования. Почему именно эти модели? X5570 это старший из «неэкстремальных Зионов» — с TDP 95 Вт. Впрочем, два процессора дают нам уже 190 Вт (что как-то многовато для настольного компьютера), но при попытке применения более быстрых процессоров (которых пока ровно два — W5580 и W5590) для одних лишь процессоров уровень TDP составит астрономические 260 Вт! Собственно, именно поэтому для многих систем именно Х5570 продолжает оставаться максимально-допустимым. L5520 же не хватает звезд с неба по производительности, зато укладывается в 60 Вт, т.е. пара таких процессоров экономичнее одного Extreme 975, например. Замечу, что в конце лета компания анонсировала уже и немного более быструю модификацию с низким потреблением, а именно L5530, но он (равно как и W5590) еще даже не появился в «Spec Finder» на сайте Intel :) Да и не может увеличение тактовой частоты на 133 МГц привести к кардинальному приросту производительности, так что для наших нужд вполне подойдет и L5520.

 Системная платаОперативная память
LGA1156Intel DP55WG (P55) 4 x 2 ГБ (1333; 9-9-9-24)
LGA1366Intel DX58SO (X58)3 x 2 ГБ (1333; 9-9-9-24 для 975 ЕЕ/Х5570, 1066; 8-8-8-19 для L5520)
Dual LGA1366Intel S5500HCV (5500)6 x 1 ГБ (1333; 9-9-9-24 для Х5570, 1066; 8-8-8-19 для L5520)

Мы приводим результаты Core i7 860 с 8 ГБ памяти — как мы уже установили, для некоторых приложений нашей методики установка 4 ГБ резко снижает производительность, а вот между 6 и 8 ГБ такой разницы нет. В системах с одним и двумя LGA1366 формально характеристики памяти вообще одинаковые, но набраны они по-разному: либо три модуля по 2 ГБ, либо шесть по 1 ГБ, поровну «розданные» процессорным сокетам. Возможно, что на практике такая конфигурация вызовет снижение производительности, однако «забивать» дуальную систему вдвое большим количеством ОЗУ, на наш взгляд, еще менее корректно.

Также необходимо сказать еще пару слов о настройке серверных платформ с точки зрения энергопотребления. Дело в том, что последняя имеет куда большие возможности, нежели принято для настольных компьютеров (например, иногда допустимо вообще жестко зафиксировать общий уровень энергопотребления на любой границе, после чего система будет невзирая ни на какие обстоятельства пытаться в него уложиться), что иногда способно доставить определенные проблемы. В частности, для задействования Turbo Boost недостаточно просто включить данную технологию в BIOS (благо включена изначально) и на этом успокоиться — приходится «подкручивать» и некоторые другие настройки. Упоминаем мы об этом на всякий случай, поскольку, очевидно, человек, собирающий систему на подобной платформе, должен разбираться в вопросе, однако... Имейте это ввиду, если вдруг производительность сервера или двухпроцессорной рабочей станции оказывается ниже положенной :)

Тестирование

Базовая методика тестирования производительности (список используемого ПО и условия тестирования) подробно описана в статье. Для текущего тестирования мы ее несколько модифицировали. Во-первых, волевым решением были исключены игровые тесты — нечего им тут делать. Тем более что слабые способности большинства игр по утилизации дополнительных ядер давно всем известны. В свое время компания Intel, конечно, имела полное право продвигать Skulltrail в качестве игровой платформы, но это ее личные проблемы — мы в таком надувательстве не участвуем :) Две-три видеокарты — да, полезно, более одного процессора — не для игр.

Во-вторых, пришлось избавиться и от еще двух приложений, что уже не радует. Используемый нами кодек XviD стабильно «рушился», увидев возможность поработать с 16-ю потоками вычисления, прямо при запуске. SPECjvm2008 в свою очередь работал (во всяком случае, в процессе тестирования все выглядело как обычно — без каких-либо ошибок), однако выдать результаты ему не удавалось. Это тем более печально, что оба теста (в особенности второй) очень положительно относились к увеличению как количества ядер, так и вообще потоков вычисления, так что их поведение на двухпроцессорной системе было крайне интересно. Но что есть — то есть.

Для удобства восприятия, результаты на диаграммах представлены в процентах (за 100% принят результат Intel Core i7 860 в каждом из тестов — поскольку баллы все равно «несовместимы» с теми, что получаются при тестировании односокетных систем, мы решили для наглядности провернуть такую замену базового уровня). Подробные результаты в абсолютных величинах доступны в виде таблицы в формате Microsoft Excel.

3D-визуализация

Давно установленный факт, что для этой группы достаточно «быстрого» двухъядерного процессора, а большее она задействовать просто не сможет, получил очередное подтверждение. При этом накладные расходы на межпроцессорное взаимодействие и разницу в материнских платах нельзя сбрасывать со счетов, так что вместо увеличения производительности имеем ее падение.

Рендеринг трёхмерных сцен

В Конференции как-то была высказана идея, что, при распределении задач в 3D-пакетах по двум компьютерам имеет смысл использовать более производительный для интерактивной работы (поскольку при этом задержки реально напрягают пользователя), а финальный просчет можно сбрасывать и на относительно медленный «числогрыз» (стоит себе в углу и считает, никому не мешая; когда досчитает — тогда и нормально). Однако пара диаграмм сразу показывает ее несостоятельность: для интерактивной работы слишком уж производительный компьютер просто не нужен (начиная с определенного разумного уровня, конечно), а вот рендеринг — такая задача, которой сколько ресурсов не дай, все равно лишними не будут. Особенно если речь идет не об индивидуальном работнике, а о фирме, в которой разработчиков несколько — можно сэкономить (в разумных пределах — опять же) на непосредственно рабочих компьютерах, зато закупить рендер-сервер, который и будет за всех все просчитывать. Вполне логичная связка получается, да и с финансовой точки зрения вполне оправданная. А вот если нужен ровно один компьютер ровно для одного пользователя, то, пожалуй, лучше ограничиться обычным настольным процессором, при наличии достаточного количества денежных средств — экстремальной модификацией последнего, но с двумя процессорами не связываться: пара Х5570 обгоняет одного 975 ЕЕ почти на 25%, но и стоимость у них внушает уважение. Причем востребована данная мощность будет только при рендеринге, но компьютер попросту будет «простаивать» при интерактивной работе. Куда интереснее тогда уж подождать пару-тройку месяцев до начала продаж Gulftown.

Кстати, ожидали мы от этой группы приложений большего. Изучение подробных результатов быстро показывает, кто все портит — Maya. Предъявлять слишком уж серьезные претензии к разработчикам, впрочем, не совсем верно. Программа отлично оптимизирована под восемь вычислительных потоков (это пара «старых» Xeon или Opteron). И даже 12 потоков ей под силу (два Xeon серии 7400 или два новых шестиядерных Opteron). Но вот появление в апреле этого года двухпроцессорных систем на базе Xeon 5500 оказалось для программы несколько неожиданным :) «Загрузить» работой 16 потоков вычисления она, увы — не в состоянии пока. Может быть, в будущем проблема будет исправлена. А пока Maya еще один идеальный потребитель будущих шестиядерных процессоров под LGA1366, но и только. Либо, опять же, выделенный рендер-сервер для нескольких человек: на нем может одновременно считаться более одной задачи, так что ядра простаивать не будут.

Научные и инженерные расчёты

Как и в первой группе — никаких приростов, только падения. Впрочем, результат неожиданным не назовешь: пары ядер достаточно, больше не требуется — это мы знали и по предыдущим тестам.

Растровая графика

Определенный прирост есть, причем немалый. Однако если посмотреть подробные результаты тестов, то видно, что в первую очередь он обусловлен почти двукратным улучшением результатов Paint.NET. В общем, это совсем не то приложение, ради которого кто-то будет приобретать более мощный компьютер :) Более важно то, что немного выиграл от двухпроцессорности и Adobe Photoshop. Но важно лишь с академической точки зрения — такой прирост не стоит таких вложений. А остальные программы группы вместо роста демонстрируют падение результатов.

Если отвлечься от конкретных приложений, то мощный рывок Paint.NET уже вряд ли вызовет смех — основной ее причиной, наверняка, являются особенности самой по себе .NET Framework. А теперь вспоминаем, что эта среда выполнения по логике чем-то схожа с виртуальной Java-машиной, причем не в классическом ее варианте (с интерпретацией байт-кода), а в современном (с использованием JIT-компиляции). И предназначена она не только для клиентских компьютеров, но и для серверов. Так что прекрасная масштабируемость Paint.NET на деле означает прекрасную масштабируемость .NET в принципе, а вот это уже вполне может оказаться востребованным в ряде условий.

Сжатие данных

Падения нет — есть даже немного неожиданный прирост. Или не совсем неожиданный? Вспоминаем, что при тестировании особенностей работы контроллера памяти в процессорах под LGA1366 на архиваторных тестах конфигурация 3 х 1 ГБ оказалась более быстрой, нежели 3 х 2 ГБ. Вот, собственно, и ответ на вопрос — почему производительность как минимум не падает и в этом случае.

Компиляция (VC++)

Четыре ядра хорошо, а восемь — лучше. Масштабируемость на 40% это случай не идеальный, но очень хороший.

Кодирование аудио

А вот вам и идеальный — 85% прироста. Как такого удалось достигнуть? А очень просто — вспоминаем методику тестирования. Сама по себе процедура аудикодирования распараллеливается относительно неплохо (если вспомнить Lame MT и GOGO-no-coda), однако в современных кодерах это используется редко. Однако мы используем для тестирования утилиту dBpoweramp, которая просто умеет запускать несколько процессов кодирования одновременно. Поэтому прирост производительности и должен быть близким к идеальному случаю.

Впрочем, с точки зрения абсолютных результатов кодирование аудио давно уже не показательно для частных пользователей, поскольку даже один Core i7 860 способен перегонять из формата в формат сотню-другую альбомов в час. Таким образом, уже с его помощью вполне можно преобразовывать аудиодиски в файлы со скоростью, превосходящей скорость их выхода в свет :)

Но есть и другая точка зрения. Помнится, на AllOfMP3.com была такая любопытная услуга, как онлайн-кодирование: на самом сервере музыка хранилась в формате без потерь, а каждый пользователь мог скачать песню в том формате и с тем битрейтом, какой ему был нужен. Этот музыкальный портал почил в бозе (совсем не по техническим причинам), однако сама идея, как нам кажется, как минимум имеет право на жизнь. Все-таки тупо держать музыку в одном формате с потерями (например, AAC 128 или 256 Кбит/с в iTunes Music Store или WMA 192 Кбит/с как в отечественной «Yote.Музыке») в XXI веке это значит обрекать себя на изначально проигрышную конкуренцию с пиратскими P2P-сетями — платные сервисы просто обязаны быть более удобными, чем нелегальные способы добычи контента, а онлайн-кодирование степень этого самого удобства повышает. Но мощности при этом должен быть соответствующими — при высокой популярности одновременно кодирование может заказать и тысяча-другая человек, которым совсем не понравится длительное ожидание начала закачки.

Кодирование видео

Ожидаемый прирост, но всего на треть. Не так уж мало, однако от задач кодирования хотелось бы получить больше. В чем проблема? В том, что XviD (который в предыдущих тестирования хорошо относился к увеличению количества потоков вычисления) пришлось убрать, зато древний как окаменевшие экскременты мамонта Canopus ProCoder, неспособный загрузить работой даже двухъядерный процессор, остался на месте и вовсю портит результаты. Что будет, если мы попробуем его временно убрать?

Ну вот — совсем другое дело: полуторакратный прирост на лицо. Видно, что в современных кодеках пара L5520 догоняет один Core i7 975 EE, несмотря на куда более низкую тактовую частоту, а Х5570 вне конкуренции (из протестированных процессоров).

Итого

Комментарии, как нам кажется, излишни — в свете выбранной методики тестирования («улучшенной» за счет отказа от игр, но «ухудшенной» из-за проблем с Java и XviD — примерный паритет, в общем) двухпроцессорные системы, конечно, обгоняют однопроцессорные при использовании одинаковых процессоров, но и только-то. Тех денег, что за них просят, они не стоят, а вместо сборки системы на двух младших или средних Xeon можно спокойно приобрести средний или старший Core i7: дешевле выйдет, возни меньше, потенциальных проблем — еще меньше, шума — тоже меньше, а производительность не хуже. И даже если приложений, способных эффективно задействовать более четырех ядер процессора, в вашем «арсенале» много, совсем не обязательно ориентироваться именно на двухпроцессорную рабочую станцию — шестиядерные настольные процессоры в ближайшее время будут выпущены обоими производителями (а предложение от Intel так и вовсе поддерживает 12 потоков вычислений на шести физических ядрах).

Но есть, конечно, сферы применения, где многопроцессорность все еще «на коне», да и, скорее всего, никогда с него не слезет :) Вот только лежат они где-то далеко от традиционных «изолированных» десктопов — на уровне серверов сетей. Долгое время для массового пользователя сервер был обычно «файлопомойкой» или способом совместного использования принтеров и факсов, однако клиент-серверная модель давно уже прочно вошла в нашу жизнь, принеся с собой рендер-серверы, серверы для видеокодирования и прочее, и прочее, и прочее... В конце-концов, как несложно заметить, наиболее полную утилизацию многопроцессорности проще всего получить при одновременном исполнении нескольких однотипных задач (каждая из которых может быть даже чисто последовательной), а это, например, терминальные серверы, позволяющие в ряде случаев вообще уйти от обычных десктопов в сторону «тонких» клиентов. Так что для разнообразных серверов приложений возможность установки двух (а то и четырех, шести или восьми) процессоров остается актуальной и будет такой всегда (во всяком случае, определенный тренд на дальнейшую дистрофию клиентов с соответствующим «ожирением» серверов наблюдается уже пару десятилетий как минимум). Однако на десктопе звезда SMP-систем, ярко вспыхнувшая в середине 90-х годов прошлого века, закатилась окончательно и бесповоротно.

www.ixbt.com

Самые необычные материнские платы за всю историю компьютеров — часть №5

Материнские платы AMD Intel Представляю вам очередную, уже пятую, подборку самых необычных материнских плат — воистину, чем больше свободы дается производителям, чем более диковинные решения они выпускают: если с видеокартами многие оставляют референсный дизайн плат и охлаждения, то в случае с материнскими платами даже такого понятия нет, поэтому каждому производителю приходится придумывать что-то свое.

ASUS Crosshair

Про линейку ASUS ROG слышали, думаю, многие — это линейка ноутбуков, видеокарт и материнских плат, рассчитанных на геймеров и оверклокеров, причем эти решения относятся к hi-end сегменту и имеют множество удобных фишек. И мало кто помнит, что начиналась эта линейка еще в 2006 году, с выходом материнской платы Crosshair. Эта плата была рассчитана на процессоры AMD (сокет AM2), имела 4 слота под DDR2 и качественную систему охлаждения:

Но что в ней было такого необычного? Во-первых, она имела кнопки включения или перезагрузки прямо на плате — сейчас этим уже никого не удивишь, а вот 10 лет назад это удобное решение было в новинку. Во-вторых, на плате был LCD Poster — небольшой монитор, который выводит не POST-коды, а сразу названия процессов загрузки, что здорово упрощает поиск проблемы, если материнская плата зависает на каком-то моменте при загрузке.  В-третьих, там была отключаемая подсветка на... задней стороне платы. Зачем? Для удобства ее установки в корпус. Также было множество интересных программных компонентов, таких как Q-Fan — удобное управление всеми вентиляторами, Supreme FX — надстройка над стандартной аудиокартой Realtek, и многое другое. В общем и целом — плата была «забита» инновациями доверху, и сильно полюбилась продвинутым геймерам, так что линейке ROG дали зеленый свет, и сейчас это одна из самым популярных и узнаваемых игровых линеек.

MSI P35 Platinum

Плата, которая метко названа пользователями «американские горки». Почему — достаточно посмотреть на нее сбоку:

Зачем было изгибать теплотрубки в круг — не особо понятно: да, чем больше рассеиваемая площадь, тем меньше будут температуры. Но не проще было просто радиаторы больше сделать? В любом случае, установке большинства кулеров такая система охлаждения не мешала, а с учетом того, что плата была на 775 сокете с поддержкой «горячих» Quad — лишним такое охлаждение точно не было. Во всем другом, пожалуй, обычная плата с 4 слотами DDR2 и двумя PCIe (до x16 и x4).

DFI LAN-Party X48-T3R

Не только MSI развлекалась с системами охлаждения — ныне не существующая компания DFI совместно с Thermalright выпустила плату с еще большими радиаторами над чипсетом и цепями питания процессора:

И если система охлаждения от MSI еще в принципе имела смысл (ну по крайней мере не мешала установке платы в корпус), то сей ужас можно было эксплуатировать только в открытом стенде. Для обычного пользователя такие извращения были, понятное дело, не нужны, а вот хардкорные оверклокеры такое охлаждение, думаю, оценили. На этом прелести платы не заканчивались — она имела целых два гигабитных контроллера Ethernet: на минуточку, это был 2008 год, когда скорость в 10 мбит/с дома считалась очень и очень хорошей. И даже сейчас большинство провайдеров ограничивают скорость на 500 мбит/с, так что для кого была скорость аж в 2000 мбит/с тогда — непонятно. Также плата поддерживала DDR3-1333 мгц, что опять же в 2008 году было очень круто. 

ASUS Sabertooth P67

Мы все привыкли, что в отличии от видеокарт, материнские платы идут без всяких кожухов и усиливающих пластин — то есть все распаянные компоненты отлично видны, и максимум «прикрытости» — это радиаторы над цепями питания процессора и чипсетом. В 2010 году ASUS решила это исправить и выпустить плату, которая была максимально накрыта пластинами, играющими роль радиатора:

Компания аргументировала это тем, что такое решение снижает нагрев компонентов на плате. Но тут возникает закономерный вопрос — а, собственно, что может греться, к примеру, рядом со слотами PCIe? Или рядом с коннекторами SATA? В общем и целом, такое решение — скорее повод показать необычную с виду плату, и никаких действительно важных функций такое дополнительное охлаждение не несло. К тому же во всем другом это была вполне обычная плата на LGA1155 сокете с поддержкой DDR3.

EVGA Classified SR-2

И хотя современные Windows умеют работать с многопроцессорными системами (пользовательские версии — с 2 процессорами), мало кто из производителей выпускает такие решения не для серверов. И это вполне объяснимо: для тех, кто хочет поиграть, есть топовые 4-ядерные (уже 6-ядерные) Core i7. Тем, кому нужны высокопроизводительные решения для вычислений — есть платформы LGA2066 и Threadripper, которые поддерживают процессоры с числом ядер аж до 18. И все эти решения покрывают 99.9% пользовательских «хотелок» — ну а для 0.1%, которым нужно большее, обычно не проблема купить или арендовать себе мощный сервер. Поэтому на рынке двухпроцессорных материнских плат почти и нет — уж слишком малому числу людей они нужны. Но все еще компания EVGA, которая давно уже выпускает очень крутые продукты, в 2010 году удивила — она выпустила плату с двумя сокетами LGA1366 (Xeon 5500 или 5600), то есть по сути серверную плату, но для обычных пользователей и по относительно божеской цене в 600 долларов (напомню, что серверные платы такого уровня стоят в разы дороже):

Разумеется, что касается распаянных слотов, EVGA размахнулась по максимуму — 12 слотов DDR3 ECC (с коррекцией ошибок), 7 слотов PCIe, поддержка 4 видеокарт в режиме SLI или Crossfire — в общем, на этой плате можно было собрать топовую сборку для игр в 4К уже в 2011 году. 

ASRock K8A780LM

В начале нулевых между AMD и Intel была достаточно жесткая война — если «синие» были на рынке процессоров очень и очень долго, то вот «красные» были тут относительно новичками, и им нужно было закрепиться на этом рынке как можно быстрее. И, разумеется, от этого страдали обычные пользователи: так, в 2003 году были выпущены процессоры Athlon с одноканальным контроллером памяти на сокете 754, и ставились они на платы со слотом AGP. Однако уже через год, когда появилась замена AGP — современный PCIe, AMD выпустила уже новые Athlon на сокете 939, с двухканальным контроллером памяти, и платы с ним уже имели PCIe. И получилось, что владельцы первых Athlon на 754 сокете остались ни с чем — и память в одноканальном режиме (то есть до 4 Гб), и поддержки новых топовых видеокарт нет. Однако компания ASRock решила исправить эту несправедливость и выпустили плату на сокете 754, но с чипсетом AMD760G (который ставился к процессорам вплоть до AM3). Но самое главное — на плате был распаян слот PCie x16:

Так что владельцам Athlon на 754 сокете повезло, и вместе с хорошей видеокартой такие процессоры еще года 3-4 (до массового распространения Core Duo) чувствовали себя в играх и работе вполне вольготно. 

FIC AZ11

FIC — очередной производитель материнских плат, не доживший до наших дней. В конце 90-ых он подружился с AMD, и также он тесно сотрудничал с производителем чипсетов VIA (которые кстати до сих пор живы), и плодом их работы стала плата AZ11 под Socket A. Если смотреть на характеристики, то вообще ничего необычного — три слота под SDRAM, AGP, 5 слотов PCI. Но вот выглядит она несколько... странно:

Складывается впечатление, что или изначально плата задумывалась как mATX, или же инженеры забыли реальные размеры формата ATX и распаяли все компоненты по своим, неведомым никому, меркам. И, оказывается, первое предположение недалеко от истины: существовала еще одна плата, AZ31, которая не отличалась от этой ничем, кроме форм-фактора mATX. И, недолго думая, инженеры FIC, дабы заново не заморачиваться со схемотехникой, взяли и просто удлинили текстолит насколько нужно. Конечно, решение дикое, но это были лихие 90-ые, производители выкручивались как могли. На этом мы заканчиваем сегодняшнюю подборку диковинных плат, и скорее всего, следующая будет последней.

www.iguides.ru


Смотрите также