Нанд что такое


3D NAND – что это такое. Устройство и перспективы

В одном из предыдущих материалов мы «пробегались» по типам памяти, используемой в SSD-накопителях. Разбирались, в чем отличия MLC от TLC, какие у каждого типа достоинства и недостатки. Но это все была технология планарной памяти, а в тренде сейчас многослойность и третье измерение. 3D NAND – что это такое? Какие у него преимущества, перспективы и, вообще, оно нам надо? Давайте разберемся.

Почему планарная память так называется

В последние годы актуальной задачей стало создание емких, быстрых, надежных и компактных хранилищ данных. Смартфоны, планшеты, фото- и видеоаппаратура, прочая мобильная и не очень техника и, конечно же, бурно завоевывающийся рынок SSD-накопители. Требуются именно емкие и небольшие по размеру микросхемы памяти, учитывая ограничения, которые предъявляют некоторые твердотельные диски. Достаточно посмотреть на форм-фактор M.2 чтобы понять, что большого количества чипов на этой маленькой платке разместить действительно негде.

До некоторого времени увеличивать емкость можно было как минимум двумя способами:

  1. Увеличить количество бит, хранящихся в ячейке памяти. Так появилась MLC (2 бита в ячейке», потом ее активно стала вытеснять TLC (уже 3 бита на ячейку).
  2. Уменьшить физический размер ячейки, для чего использовались все боле тонкие техпроцессы. Так, на смену 32 нм техпроцессу пришел 24 нм, его сменил 19 нм, последний, используемый сейчас, техпроцесс – это 15 нм.

Для увеличения емкости кристалла используют оба способа, но дело в том, что последний, 15 нм техпроцесс, действительно последний, т. к. достигнут технологический предел уменьшения физического размера ячеек, и 15 нм действительно является последним техпроцессом, по которому производят привычную NAND-память.

Что собой представляет NAND-память

Если рассмотреть архитектуру памяти, то единицей хранения информации является транзистор. Традиционно используются транзисторы с плавающим затвором, в котором и хранится один, два или три бита информации. Количество этих битов зависит от типов памяти, о которых можно прочитать в другом материале.

Упрощенная схема NAND-памяти представлена на рисунке. Ячейки (они же транзисторы) соединяются последовательно по 16 или 32 ячеек в группе, образуя страницы, из которых формируется блок. Можно представить себе этакое плоское поле, все утыканное ячейками памяти.

Один из недостатков такой организации памяти – в необходимости оперировать не отдельными битами или байтами, а блоками данных, т. е. произвольный доступ к отдельной ячейке невозможен. Если в случае чтения это не является проблемой, то с записью возникают сложности. Для изменения одного бита приходится считывать блок данных, изменять его и записывать обратно.

Это требует выполнения определенных действий (и времени) по программированию ячеек при записи. Причем перезаписываются даже те ячейки, которые не изменялись. Отсюда и вытекает ограниченность количества циклов перезаписи, о которой часто говорят применительно к твердотельным накопителям. Особенно актуально это стало в связи с массовым распространением трехбитовых (TLC) ячеек. Что ж, ради снижения стоимости чипов памяти приходится чем-то жертвовать.

Подобное соединение ячеек позволяет плотно разместить их на кристалле, чем достигается высокая емкость чипов памяти. Чем больше информации можно разместить на единице площади кристалла, тем ниже себестоимость конечного продукта, в данном случае – SSD-диска.

Как было сказано, бесконечно уменьшать размер ячеек нельзя, как и увеличивать плотность их расположения. 15-нм техпроцесс подошел к тому пределу, когда двигаться дальше уже некуда. Ячейки настолько малы, что при дальнейшем их уменьшении заряд начнет «перетекать» из одной ячейки в другую, что, естественно, недопустимо.

3D NAND – что это, спасение?

Можно сказать, что да. Если стоимость кристалла памяти зависит от его размера, а уплотнять его уже не представляется возможным, то почему бы не перейти от двумерной (планарной) организации ячеек к трехмерной, развернув их вертикально? В этом фундаментальное отличие 3D NAND от старой, «плоской» системы размещения ячеек.

Ячейка в данном случае имеет форму цилиндра, в котором внешний слой – это управляющий затвор, внутренний – изолятор и между ними слой, хранящий биты информации слой. Эти цилиндры размещены вертикально, образуя стек, это позволяет убить сразу не одного зайца. Мало того, что существенно возросла емкость кристалла, так еще и появилась возможность откатиться немного назад, вернувшись на более «толстые» техпроцессы, снизив взаимовлияние соседних ячеек друг на друга и риск перетекания заряда из одной ячейки в другую.

Первой такую память сделала компания Samsung, назвав ее V-NAND (V – от слова vertical, вертикальная). Первое поколение имело 24 слоя, второе – 32, а в последнем, третьем поколении используются уже 48 слоев. Компании Micron, Toshiba представили свои чипы памяти позже, и производят их уже с 64-мя слоями.

Причем, наблюдается и разница в подходах к архитектуре этих микросхем и расположению их на кристалле.

Micron располагает управляющие элементы под NAND ячейками, что экономит место на кристалле, позволяя увеличить его емкость. Мало того, хотя Samsung и Toshiba отказались от технологии плавающего затвора, воспользовавшись технологией CTF (Charge Trap Flash), которая использует изолированную область для хранения заряда (именно изолированность позволяет снизить утечки, повысить надежность памяти), в Micron остались верны плавающему затвору.

В Toshiba управляющие элементы расположены в верхней части, что, по мнению компании, позволяет этим элементам меньше подвергаться нагреву. К тому же линии ячеек как бы свернуты, напоминая букву «U», а не расположены в одну линию. Все это позволяет добиться снижения количества ошибок при операциях чтения/записи. Ну и, как было сказано чуть выше, используется технология CTF. Сама Toshiba называет свою трехмерную память BiCS 3D NAND (Bit Cost Scalable).

В общем, подходы разные, и что лучше или хуже – будет ясно после того, как появится достаточное количество накопителей с чипами памяти разных производителей, которые можно будет сравнить, устроив тестирование, накопится определенная статистика использования.

Итак, трехмерная память сняла остроту необходимости утончать техпроцесс, как один из способов увеличения емкости чипов. Правда, при этом возникли некоторые другие технологические сложности, которые, судя по бодрым анонсам практически всех чипмейкеров, успешно преодолеваются. Так, SK Hynix планирует в скором времени перейти на производство 72-слойных чипов. Та же Toshiba отлаживает выпуск 64-слойных чипов, предлагая их сейчас с емкостью 256 Гб (32 ГБ), а в скором времени ожидается выпуск 3D NAND чипов с емкостью 512 Гб (64 ГБ).

Судя по всему, второе полугодие обещает быть интересным. Увеличится емкость чипов, будут предложены кристаллы с бОльшим количеством слоев.

Что такое технология CTF

В чем суть этой технологии? Разница заключается в области, в которой хранится заряд, и материала, из которого эта область выполнена. Классический транзистор с плавающим затвором, помимо обычных стока, истока, и затвора, называемого в данном случае «управляющим затвором», имеет и еще одну область – расположенный в слое диэлектрика проводник, называемый «плавающим затвором», в котором, собственно, и накапливается заряд. В нем-то и хранятся биты данных. В качестве диэлектрика используется диоксид кремния SiO2.

Транзистор, выполненный по технологии CTF (Charge Trap Flash) сделан несколько иначе. Собственно, область, где хранится заряд, выполнена из нитрида кремния Si3N4, обладающего рядом отличительных свойств. Так, являясь, по сути, диэлектриком, этот материал способен хранить заряд, что позволяет использовать его в качестве запоминающей ячейки.

По сравнению с диоксидом кремния (SiO2), бОльшая концентрация электронных и дырочных ловушек нитрида кремния как раз и позволяет использовать материал для хранения данных.

При этом такой параметр, как диэлектрическая проницаемость у нитрита кремния (Si3N4) выше, чем у диоксида кремния — 7 против 3.9, что позволяет снизить токи утечки и более надежно хранить заряд.

Отсюда становится понятной аллегория, озвученная лидером в разработке 3D NAND памяти, компанией Samsung, что транзисторы с плавающим затвором – это вода, а с ловушкой заряда – это сыр. Плавающий затвор (вода) слабо препятствует перемещениям зарядов и их попыткам вообще покинуть эту область (утечка), в то время как ловушка заряда подобна «сыру», существенно ограничивающая возможность этих перемещений и попытки вырваться на «свободу».

Среди достоинств этой технологии обычно указывают:

  • Увеличение надежности и упрощение хранения нескольких бит в одной ячейке.
  • Упрощение производства за счет уменьшения количества технологических операций.
  • Меньший размер ячейки.
  • Более высокий процент выхода годных.

Различают несколько вариаций изготовления слоев транзистора в зависимости от материалов:

  • SONOS – Silicon-Oxide-Nitride-Oxide-Silicon.
  • MONOS – Metal-Oxide-Nitride-Oxide-Silicon.
  • TANOS – Titanium-Alumina-Nitride-Oxide-Silicon.
  • THNOS – Titanium-high-k dielectric-Nitride-Oxide-Silicon.

Где предел 3D NAND?

Ну хорошо, количество слоев памяти растет, а где предел, не получится ли так, что вскорости будет достигнут лимит количества слоев, и придется искать альтернативы? Ответ кроется в технологических проблемах и способах их решения.

Если вкратце, и очень упрощенно, то производство многослойной памяти заключается в напылении n-го количества слоев на кремниевую пластину, образующие линии слов (word line), а другая операция заключается в травлении огромного количества отверстий (high aspect ratio etch) через эти слои, чтобы впоследствии сформировать линии битов (bit line). В пространстве линии слов и битов ориентированы перпендикулярно друг другу, а главные сложности кроются именно в отверстиях.

Еще пару лет назад заявлялось, что есть технологические проблемы с травлением отверстий в слоях, количество которых достигает 60-70. Правда, сейчас, когда 64-слойная память – уже реальность, а на горизонте 72-слойная, и есть разговоры про более многослойные варианты, с этой проблемой удается справиться. Вопрос, как?

Один из вариантов – технология «string stacking». Если не вдаваться в технические подробности, то это установка отдельных чипов памяти (которые сами по себе многослойные) друг на друга (стекирование) с последующим соединением таким образом, чтобы этот многослойный бутерброд распознавался как единое целое, как одна микросхема. Таким образом, использовав чипы 3D NAND с 32-мя слоями, можно получить итоговый чип с 64 (2 слоя чипов), 96 (3 слоя чипов) и т. д. слоями. Но и тут есть сложности технологического порядка, в первую очередь связанные именно с соединением и коммутацией чипов, которые находятся на этапе решения.

Еще один момент – а сколько вообще слоев может быть? Где предел, при котором микросхема не станет слишком толстой? Если рассматривать с теоретической точки зрения, то можно провести следующие грубые прикидки.

Высота слоев 32-слойной 3D NAND от Samsung составляет около 4 мкм. При этом полупроводниковые пластины, используемые в производстве микросхем, имеют толщину 625-775 мкм в зависимости от диаметра. Одним из завершающих этапов производства чипов (правда не всегда используемый) является сошлифовывание (back-grinding) обратной стороны этой пластины до толщины порядка 50-75 мкм. Это уменьшает размеры кристалла и облегчает упаковку готовой микросхемы в корпус, да и для стекирования чипов подходит как нельзя лучше.

Если взять толщину 32-слойного чипа памяти и толщину 300-мм пластины, которая составляет 775 мкм, то, в теории, можно уложить более 190 слоев чипов памяти прежде, чем их толщина превысит толщину исходной пластины (775 / 4 = 193.75).

Конечно, это только в теории, и, скорее всего, таких значений достигнуто не будет, но это иллюстрирует, что «запаса прочности» у технологии 3D NAND вполне достаточно. Главное – решить текущие технологические проблемы именно с укладкой чипов друг на друга и их соединением. Если же это будет выполнено, то количество слоев (чипов) может исчисляться десятками и сотнями, а количество слоев ячеек может достигать многих сотен. Возможную емкость подобных микросхем попробуйте посчитать самостоятельно.

Либо искать решение проблемы с травлением отверстия в многослойных кристаллах. В конце концов, подробностей о том, как выполнены представленные 64-слойные чипы, а также уже анонсированные 72-слойные, нет. Возможно, удалось все же найти разобраться с травлением, либо присутствуют какие-то другие решения.

В общем, в теории перспективы вполне радужные, что будет на практике?

Проблема параллелизма операции чтения/записи

Увеличение емкости, несомненно, благо, т. к. в небольшом форм-факторе (в том же M.2) можно получить накопители объемом в несколько терабайт. Вот только возникла одна проблема: при высокой емкости чипов становится сложным распараллелить операции чтения/записи. В первую очередь это касается накопителей небольшого объема.

Это хорошо характеризует такой печально известный своей низкой производительностью накопитель Intel 600p. Дело в том, что в нем используются чипы памяти емкостью 384 Гб (48 ГБ) производства Micron, и для того, чтобы получить емкость накопителя в 128 ГБ, надо всего 3 такие микросхемы. Для 256-гигабайтного накопителя используются 6 микросхем и т. д.

Казалось бы, меньше микросхем – больше места для их размещения. Это так, но большинство контроллеров, особенно в сегменте производительных моделей, имеют 4 или 8 каналов, обеспечивающих параллельный доступ к памяти. Если микросхем памяти 3 (6, 9…), то как задействовать все доступные каналы? В том то и дело, что никак. Вместо использования всех 8-ми (или 4-х) каналов приходится ограничиваться использованием только шести (3-х). Получается, что контроллер работает не на полную мощь, отсюда – падение производительности.

В общем, вырисовывается некоторая проблема именно с накопителями низкой емкости. Возможно, стоимость их будет невелика, но и скоростные показатели будут там же. Получается, что если хочется скорости, то пожалуйте приобретать более емкие накопители. А стоимость?

Заключение. 3D NAND – это то, с чем нам жить

Ни для кого не секрет, что за 3D NAND будущее, и в самом ближайшее время начнется (если уже не началось) активное вытеснение планарной памяти. Все будет зависеть от стоимости решений, производственных возможностей производителей, в первую очередь Micron, Toshiba, и, возможно, SK Hynix, если дело двинется дальше анонсов. Про Samsung говорить нечего, т. к. свои чипы 3D памяти они, фактически, никому не поставляют.

Думается, бюджетные SSD-накопители продержатся еще какое-то время, а вот производительные решения, и, в первую очередь, твердотельные диски, работающие на шине PCIe, будут активно мигрировать именно на 3D NAND.

andiriney.ru

Структура NAND-памяти.

Продолжаем обсуждать устройство и принцип работы запоминающих устройств на нашем сайте. В прошлый раз мы обсуждали Flash-память (ссылка), а сегодня сконцентрируем внимание на одном из типов уже упомянутой Flash-памяти, а именно на NAND-памяти. Частично мы уже разобрались с устройством и работой NAND, так что перейдем к рассмотрению основных алгоритмов, способов подключения и некоторых тонкостей, о которых нельзя забывать, работая с NAND.

Начнем с того, что рассмотрим два типа NAND-памяти – а именно SLC-(single-level cell) и MLC-(multi-level cell) устройства. В SLC приборах одна ячейка памяти хранит один бит информации – именно такие устройства мы обсуждали в предыдущей статье. Возможно только два состояния ячейки памяти (полевого транзистора с плавающим затвором). Первое состояние соответствует заряженному затвору, а второе, соответственно, разряженному. Тут все просто – подаем пороговое напряжение и по наличию или отсутствию тока стока можем определить, какой бит записан в данную ячейку памяти.

MLC приборы отличаются тем, что одна элементарная ячейка может хранить несколько бит информации, чаще всего два бита. В таких устройствах различают 4 уровня заряда плавающего затвора, что соответствует 4 возможным сохраненным состояниям:

Для чтения информации из такой ячейки, в отличии от SLC-устройств, необходимо следить за током стока при нескольких разных значениях порогового напряжения на затворе транзистора.

MLC-память имеет меньшее количество максимально возможных циклов перезаписи по сравнению с SLC. Кроме того, SLC быстрее – то есть операции чтения/записи/стирания выполняются за меньшее количество времени. А поскольку для определения состояния ячейки памяти используется только одно пороговое значение напряжения, при использовании SLC-памяти меньше вероятность возникновения ошибки. Но это не значит, что MLC хуже. MLC-память, во-первых позволяет сохранять большее количество информации, а во-вторых дешевле. То есть с точки зрения отношения цена/качество MLC, в принципе, выглядит предпочтительнее.

Переходим к структуре NAND-памяти 😉

Как мы помним, в отличие от NOR-памяти, при использовании NAND мы не имеем доступа к произвольной ячейке памяти. Все ячейки объединены в страницы. А страницы объединены в логические блоки. Каждая страница помимо сохраненной пользователем информации содержит некоторые дополнительные данные – информация о “плохих” блоках, дополнительная служебная информация для коррекции ошибок.

Сложность при работе с NAND заключается в том, что невозможно получить доступ к какой-то конкретной ячейке информации. Запись данных можно производить только постранично, то есть если мы хотим изменить какой-то бит, то нам нужно перезаписать все страницу целиком. А стирать данные и вовсе можно только блоками. Вот для примера характеристики микросхемы NAND-памяти NAND128W3A: размер страницы – 512 байт + 16 байт дополнительной служебной информации, размер блока – 16 кБайт, то есть 32 страницы.

Еще одной проблемой при использовании NAND является то, что количество циклов перезаписи не бесконечно. Таким образом, если запись всегда будет производиться в одну и ту же страницу, она рано или поздно окажется поврежденной. И для того, чтобы обеспечить равномерный износ всех ячеек памяти, контроллер NAND-памяти ведет учет количества циклов записи в каждый отдельный блок памяти. Если контроллер видит, что блок “плохой”, то он может пропустить его и произвести запись в следующий блок. Благодаря этому срок службы носителей информации значительно увеличивается. Если мы хотим записать большой массив данных, то внутри микросхемы памяти все данные будут перемешаны по блокам (работает алгоритм записи в наименее изношенные блоки), а когда встает задача чтения этих данных, контроллер NAND-памяти упорядочит данные и выдаст их нам в первозданном виде.

Со структурой разобрались, напоследок я бы еще хотел немного рассказать о том, как осуществляется подключение микросхем NAND-памяти.

А для этого используется параллельная шина передачи данных, Ширина шины – 8 или 16 байт, в зависимости от конкретного устройства. Линии данных объединены с линиями адреса, что позволяет уменьшить количество занятых выводов. Вот тут хорошо описаны управляющие сигналы и их назначение:

Если мы хотим подключить память к микроконтроллеру, то лучше всего выбрать контроллер, в котором есть аппаратная поддержка передачи данных по параллельному интерфейсу. Например, многие STM32 оснащены модулем FSMC, который позволяет подключить внешнее устройство памяти. Но в это мы сейчас не будем углубляться, лучше оставим эту тему до будущих статей 😉 Возможно, в ближайшее время как раз и попробуем соорудить небольшой пример для STM32, в котором будем записывать и считывать данные из NAND-памяти, так что до скорых встреч! )

microtechnics.ru

Что такое 3D-технология V-NAND, используемая в SSD?

Твердотельные накопители (SSD) хорошо подходят для того, чтобы превзойти распространенность механических жестких дисков в качестве основного хранилища для ПК и ноутбуков. То, что они предлагают, намного опережает все преимущества, которые существовали у жестких дисков до этого момента, и есть причина, почему. Используя технологию NAND и 3D V-NAND, производители SSD снижают затраты на бит и одновременно увеличивают максимальную пропускную способность чипа, тем самым позволяя им выгодно конкурировать с жесткими дисками в отделе ценообразования.

Жесткие диски являются громоздкими и используют вращающиеся магнитные диски, которые являются шумными и не такими мощными, как хотелось бы. Гениальность SSD, возможно, проявляется в отсутствие этих движущихся частей. Это позволяет OEM-производителям создавать еще более мелкие форм-факторы (меньшие, чем средний чип RAM). Что вы должны знать, так это то, что SSD вообще не воспроизводят звук и используют сравнительно меньшую мощность, чем их жесткие диски. Причина этого волшебства сводится к технологии флэш-памяти V-NAND.

V-NAND или 3D V-NAND - это технология укладки на уровне ячеек, в которой несколько слоев ячейки флэш-памяти уложены вертикально и трехмерно на одном чипе NAND. Микросхемы, о которых идет речь, вертикально укладываются в 36, 48, 72 или 64, а теперь 96-слойные флеш-камеры. В этой технологии используются ячейки с зарядовой ловушкой 3D (CTF), построенные в виде пирамиды или ступенчатой ​​ступенчатой ​​структуры с вертикальными канальными отверстиями или более традиционной плавающей платой MOSFET.Вертикальная укладка обеспечивает более высокую плотность ячеек в заданном объеме, чем в 2D-архитектуре. Впоследствии мы можем иметь SSD с более высокой пропускной способностью, не увеличивая объем памяти.

Кроме того, это улучшает потребление энергии между взаимосвязанными ячейками памяти. В конце концов, это позволяет создавать эффективные SSD с большей емкостью. Все это делается без сокращения литографии NAND до меньших узлов процесса.

Что такое 3D-технология V-NAND, используемая в SSD? Reviewed by Admin on августа 02, 2018 Rating: 5

www.technodor.info

Флеш-память - это... Что такое Флеш-память?

Флеш-память (англ. flash memory) — разновидность полупроводниковой технологии электрически перепрограммируемой памяти (EEPROM). Это же слово используется в электронной схемотехнике для обозначения технологически законченных решений постоянных запоминающих устройств в виде микросхем на базе этой полупроводниковой технологии. В быту это словосочетание закрепилось за широким классом твердотельных устройств хранения информации.

Благодаря компактности, дешевизне, механической прочности, большому объёму, скорости работы и низкому энергопотреблению, флеш-память широко используется в цифровых портативных устройствах и носителях информации.

История

Предшественниками технологии флеш-памяти можно считать ультрафиолетово и электрически стираемые ПЗУ (EEPROM). Эти приборы также имели матрицу транзисторов с плавающим затвором, в которых инжекция электронов в плавающий затвор («запись») осуществлялась созданием большой напряженности электрического поля в тонком диэлектрике. Однако площадь разводки компонентов в матрице резко увеличивалась, если требовалось создать поле обратной напряженности для снятия электронов с плавающего затвора («стирания»). Поэтому и возникло два класса устройств: в одном случае жертвовали цепями стирания, получая память высокой плотности с однократной записью, а в другом случае делали полнофункциональное устройство с гораздо меньшей емкостью.

Соответственно усилия инженеров были направлены на решение проблемы плотности компоновки цепей стирания. Они увенчались успехом изобретением инженера компании Toshiba Фудзио Масуокой в 1984 году. Название «флеш» было придумано также в Toshiba коллегой Фудзио, Сёдзи Ариидзуми, потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния.

В 1988 году Intel выпустила первый коммерческий флеш-чип NOR-типа.

NAND-тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference.

Принцип действия[1]

Принцип работы полупроводниковой технологии флеш-памяти основан на изменении и регистрации электрического заряда в изолированной области («кармане») полупроводниковой структуры.

Изменение заряда («запись» и «стирание») производится приложением между затвором и истоком большого потенциала, чтобы напряженность электрического поля в тонком диэлектрике между каналом транзистора и карманом оказалась достаточна для возникновения туннельного эффекта. Для усиления эффекта тунеллирования электронов в карман при записи применяется небольшое ускорение электронов путем пропускания тока через канал полевого транзистора (эффект Hot carrier injection (англ.)).

Чтение выполняется полевым транзистором, для которого карман выполняет роль затвора. Потенциал плавающего затвора изменяет пороговые характеристики транзистора, что и регистрируется цепями чтения.

Эта конструкция снабжается элементами, которые позволяют ей работать в большом массиве таких же ячеек.

  • Разрез транзистора с плавающим затвором

  • Программирование флеш-памяти

NOR- и NAND-приборы

Различаются методом соединения ячеек в массив и алгоритмами чтения-записи.

Конструкция NOR использует классическую двумерную матрицу проводников, в которой на пересечении строк и столбцов установлено по одной ячейке. При этом проводник строк подключался к стоку транзистора, а столбцов — ко второму затвору. Исток подключался к общей для всех подложке. В такой конструкции было легко считать состояние конкретного транзистора, подав положительное напряжение на один столбец и одну строку.

Конструкция NAND — трёхмерный массив. В основе та же самая матрица, что и в NOR, но вместо одного транзистора в каждом пересечении устанавливается столбец из последовательно включенных ячеек. В такой конструкции получается много затворных цепей в одном пересечении. Плотность компоновки можно резко увеличить (ведь к одной ячейке в столбце подходит только один проводник затвора), однако алгоритм доступа к ячейкам для чтения и записи заметно усложняется.

Технология NOR позволяет получить быстрый доступ индивидуально к каждой ячейке, однако площадь ячейки велика. Наоборот, NAND имеют малую площадь ячейки, но относительно длительный доступ сразу к большой группе ячеек. Соответственно, различается область применения: NOR используется как непосредственная память программ микропроцессоров и для хранения небольших вспомогательных данных.

Названия NOR и NAND произошли от ассоциации схемы включения ячеек в массив со схемотехникой микросхем КМОП-логики.

Существовали и другие варианты объединения ячеек в массив, но они не прижились.

  • Компоновка шести ячеек NOR flash

  • Структура одного столбца NAND flash

SLC- и MLC-приборы

Различают приборы, в которых элементарная ячейка хранит один бит информации и несколько бит. В однобитовых ячейках различают только два уровня заряда на плавающем затворе. Такие ячейки называют одноуровневыми (англ. single-level cell, SLC). В многобитовых ячейках различают больше уровней заряда; их называют многоуровневыми (англ. multi-level cell, MLC[2]). MLC-приборы дешевле и более ёмкие, чем SLC-приборы, однако с большим временем доступа и меньшим максимальным количеством перезаписей.

Обычно под MLC понимают память с 4 уровнями заряда (2 бита), память с 8 уровнями (3 бита) называют TLC[3], с 16 уровнями (4 бита) — 16LC.[4]

Аудиопамять

Естественным развитием идеи MLC ячеек была мысль записать в ячейку аналоговый сигнал. Наибольшее применение такие аналоговые флеш-микросхемы получили в воспроизведении звука. Такие микросхемы получили широкое распространение во всевозможных игрушках, звуковых открытках и т. д.[5]

Многокристальные микросхемы

Часто в одну микросхему флеш-памяти упаковывается несколько полупроводниковых пластин (кристаллов), до 8-16 штук.[6]

Технологические ограничения

Запись и чтение ячеек сильно различаются в энергопотреблении: устройства флеш-памяти потребляют достаточно большой ток при записи для формирования высоких напряжений, тогда как при чтении затраты энергии относительно малы.

Ресурс записи

Изменение заряда сопряжено с накоплением необратимых изменений в структуре и потому количество записей для ячейки флеш-памяти ограничено (обычно до 10 тыс. раз для MLC-устройств и до 100 тыс. раз для SLC-устройств).

Одна из причин деградации — невозможность индивидуально контролировать заряд плавающего затвора в каждой ячейке. Дело в том, что запись и стирание производятся над множеством ячеек одновременно — это неотъемлемое свойство технологии флеш-памяти. Автомат записи контролирует достаточность инжекции заряда по референсной ячейке или по средней величине. Постепенно заряд отдельных ячеек рассогласовывается и в некоторый момент выходит за допустимые границы, которые может скомпенсировать инжекцией автомат записи и воспринять устройство чтения. Понятно, что на ресурс влияет степень идентичности ячеек. Одно из следствий этого — с уменьшением топологических норм полупроводниковой технологии создавать идентичные элементы все труднее, поэтому вопрос ресурса записи становится все острее.

Другая причина — взаимная диффузия атомов изолирующих и проводящих областей полупроводниковой структуры, ускоренная градиентом электрического поля в области кармана и периодическими электрическими пробоями изолятора при записи и стирании. Это приводит к размыванию границ и ухудшению качества изолятора, уменьшению времени хранения заряда.

Идут исследования технологии восстановления ячейки флеш-памяти путём локального нагрева изолятора затвора до 800°С в течении нескольких миллисекунд.[7]

Срок хранения данных

Изоляция кармана неидеальна, заряд постепенно изменяется. Срок хранения заряда, заявляемый большинством производителей для бытовых изделий — 10-20 лет.

Специфические внешние условия могут катастрофически сократить срок хранения данных. Например, повышенные температуры или радиационное облучение (гамма-радиация и частицы высоких энергий).

У современных микросхем NAND при чтении возможно повреждение данных на соседних страницах в пределах блока. Осуществление большого числа (сотни тысяч и более) операций чтения без перезаписи может ускорить возникновение ошибки.[8]

Иерархическая структура

Стирание, запись и чтение флеш-памяти всегда происходит относительно крупными блоками разного размера, при этом размер блока стирания всегда больше чем блок записи, а размер блока записи не меньше, чем размер блока чтения. Собственно, это — характерный отличительный признак флеш-памяти по отношению к классической памяти EEPROM.

Как следствие — все микросхемы флеш-памяти имеют ярко выраженную иерархическую структуру. Память разбивается на блоки, блоки состоят из секторов, секторы из страниц. В зависимости от назначения конкретной микросхемы глубина иерархии и размер элементов может меняться.

Например, NAND-микросхема может иметь размер стираемого блока в сотни кбайт, размер страницы записи и чтения 4 кбайт. Для NOR-микросхем размер стираемого блока варьируется от единиц до сотен кбайт, размер сектора записи — до сотен байт, страницы чтения — единицы-десятки байт.

Скорость чтения и записи

Скорость стирания варьируется от единиц до сотен миллисекунд в зависимости от размера стираемого блока. Скорость записи — десятки-сотни микросекунд.

Обычно скорость чтения для NOR-микросхем нормируется в десятки наносекунд. Для NAND-микросхем скорость чтения десятки микросекунд.

Особенности применения

Стремление достичь предельных значений емкости для NAND-устройств привело к «стандартизации брака» — праву выпускать и продавать микросхемы с некоторым процентом бракованных ячеек и без гарантии непоявления новых «bad-блоков» в процессе эксплуатации. Чтобы минимизировать потери данных, каждая страница памяти снабжается небольшим дополнительным блоком, в котором записывается контрольная сумма, информация для восстановления при одиночных битовых ошибках, информация о сбойных элементах на этой странице и количестве записей на эту страницу.

Сложность алгоритмов чтения и допустимость наличия некоторого количества бракованных ячеек вынудило разработчиков оснастить NAND-микросхемы памяти специфическим командным интерфейсом. Это означает, что нужно сначала подать специальную команду переноса указанной страницы памяти в специальный буфер внутри микросхемы, дождаться окончания этой операции, считать буфер, проверить целостность данных и, при необходимости, попытаться восстановить их.

Слабое место флеш-памяти — количество циклов перезаписи в одной странице. Ситуация ухудшается также в связи с тем, что стандартные файловые системы — то есть стандартные системы управления файлами для широко распространенных файловых систем — часто записывают данные в одно и то же место. Часто обновляется корневой каталог файловой системы, так что первые секторы памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволит существенно продлить срок работы памяти. Подробнее про задачу равномерного распределения износа см.: Wear leveling (англ.).

Подробнее о проблемах управления NAND-памятью, вызванных разным размером страниц стирания и записи см.: Write amplification (англ.).

NAND-контроллеры

Для упрощения применения микросхем флеш-памяти NAND-типа они используются совместно со специальными микросхемами — NAND-контроллерами. Эти контроллеры должны выполнять всю черновую работу по обслуживанию NAND-памяти: преобразование интерфейсов и протоколов, виртуализация адресации (с целью обхода сбойных ячеек), проверка и восстановление данных при чтении, забота о разном размере блоков стирания и записи, забота о периодическом обновлении записанных блоков (есть и такое требование), равномерное распределение нагрузки на секторы при записи.

Однако задача равномерного распределения износа не обязательна, что зачастую приводит к экономии в дешевых изделиях. Такие флеш-карты памяти и USB-брелки быстро выйдут из строя при частой перезаписи. Если вам нужно часто записывать на флешку — старайтесь брать дорогие изделия с SLC-памятью и качественными контроллерами, а также старайтесь минимизировать запись в корневую директорию.

На дорогие NAND-контроллеры также может возлагаться задача «ускорения» микросхем флеш-памяти путем распределения данных одного файла по нескольким микросхемам. Время записи и чтения файла при этом сильно уменьшается.

Специальные файловые системы

Зачастую флеш-память подключается в устройстве напрямую — без контроллера. В этом случае задачи контроллера должен выполнять программный NAND-драйвер в операционной системе. Чтобы не выполнять избыточную работу по равномерному распределению записи по страницам, стараются эксплуатировать такие носители со специально придуманными файловыми системами (англ. Flash file system): JFFS2[9] и YAFFS[10] для Linux и др.

Применение

Существует два основных применения флеш-памяти: как мобильный носитель информации и как хранилище программного обеспечения («прошивки») цифровых устройств. Зачастую эти два применения совмещаются в одном устройстве.

Флеш-память позволяет обновлять прошивку устройств в процессе эксплуатации.

NOR

Применение NOR-флеши, устройства энергонезависимой памяти относительно небольшого объёма, требующие быстрого доступа по случайным адресам и с гарантией отсутствия сбойных элементов:

  • Встраиваемая память программ однокристальных микроконтроллеров. Типовые объёмы — от 1 кбайта до 1 Мбайта.
  • Стандартные микросхемы ПЗУ произвольного доступа для работы вместе с микропроцессором.
  • Специализированные микросхемы начальной загрузки компьютеров (POST и BIOS), процессоров ЦОС и программируемой логики. Типовые объёмы — единицы и десятки мегабайт.
  • Микросхемы хранения среднего размера данных, например DataFlash. Обычно снабжаются интерфейсом SPI и упаковываются в миниатюрные корпуса. Типовые объёмы — от сотен кбайт до технологического максимума.

NAND

Флеш-карты разных типов (спичка для сравнения масштабов)

Там, где требуются рекордные объёмы памяти — NAND-флеш вне конкуренции.

В первую очередь — это всевозможные мобильные носители данных и устройства, требующие для работы больших объёмов хранения. В основном, это USB-брелоки и карты памяти всех типов, а также мобильные медиаплееры.

Флеш-память типа NAND позволила миниатюризировать и удешевить вычислительные платформы на базе стандартных операционных систем с развитым программным обеспечением. Их стали встраивать во множество бытовых приборов: сотовые телефоны и телевизоры, сетевые маршрутизаторы и точки доступа, медиаплееры и игровые приставки, фоторамки и навигаторы.

Высокая скорость чтения делает NAND-память привлекательной для кэширования винчестеров. При этом часто используемые данные операционная система хранит на относительно небольшом твердотельном устройстве, а данные общего назначения записывает на дисковый накопитель большого объёма.[11]

Благодаря большой скорости, объёму и компактным размерам NAND-память активно вытесняет из обращения носители других типов. Сначала исчезли дискеты и дисководы гибких магнитных дисков[12], ушли в небытие накопители на магнитной ленте. Магнитные носители практически полностью вытеснены из мобильных и медиаприменений. Сейчас флеш-память активно теснит винчестеры в ноутбуках[13] и уменьшает долю записываемых оптических дисков.

Стандартизацией применения чипов флеш-памяти типа NAND занимается Open NAND Flash Interface Working Group (ONFI). Текущим стандартом считается спецификация ONFI версии 1.0[14], выпущенная 28 декабря 2006 года. Группа ONFI поддерживается конкурентами Samsung и Toshiba в производстве NAND-чипов: Intel, Hynix и Micron Technology.[15]

Достижения

USB-накопитель на флеш-памяти

Максимальное значение объёмов микросхем NOR — до 256 Мбайт. NAND имеет максимальное значение объёма на 8-кристальную микросхему 128 Гбайт (то есть объём кристалла 16 Гбайт).[16]

В 2005 году Toshiba и SanDisk представили NAND-чипы объёмом 1 Гб[17], выполненные по технологии многоуровневых ячеек, где один транзистор может хранить несколько бит, используя разный уровень электрического заряда на плавающем затворе.

Компания Samsung в сентябре 2006 года представила 4-гигабайтный чип, выполненный по 40-нм технологическому процессу.[18]

В конце 2007 года Samsung сообщила о создании MLC-чипа флеш-памяти типа NAND, выполненного по 30-нм технологическому процессу с ёмкостью чипа 8 Гб. В декабре 2009 года начато производство этой памяти объёмом 4 Гб (32 Гбит).[19]

На конец 2008 года лидерами по производству флеш-памяти являлись Samsung (31 % рынка) и Toshiba (19 % рынка, включая совместные заводы с Sandisk). (Данные согласно iSuppli на 4 квартал 2008 года).

В июне 2010 года Toshiba объявила о выпуске 128-Гб чипа, состоящего из 16 модулей по 8 Гб. Одновременно с ним в массовую продажу вышли и чипы в 64 Гб.[20][21]

Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. К 2007 году USB-устройства и карты памяти имели объём от 512 Мб до 64 Гб. Самый большой объём USB-устройств составлял 4 терабайта.

В 2010 году Intel и Micron сообщили об успешном совместном освоении выпуска 3-битной (TLC) флеш-памяти типа NAND с использованием норм 25-нм техпроцесса.[2]

6 декабря 2011 года Intel и Micron анонсировали NAND-флеш-память по технологии 20 нм объёмом 128 Гбит.[22]

27 августа 2011 года Transcend совместно с институтом ITRI представили USB-накопитель с флеш-памятью ёмкостью 2 Тб и подключением по стандарту USB 3.0.[23]

См. также

Примечания

dic.academic.ru


Смотрите также