Intel i9 7900x


Процессор Intel® Core™ i9-7900X

Неважно, работаете ли вы над полнометражным фильмом или новым эпизодом для своего видеоблога на YouTube*, процессоры Intel® Core™ серии X с разблокированным множителем адаптируют производительность в соответствии с вашими потребностями, повышая тактовую частоту двух самых быстрых ядер и вплоть до 18 ядер, если требуется экстремальная мегазадачность. Оцените экстремальную производительность, реалистичную графику с разрешением 4K, высокую скорость подсистемы хранения и памяти, а также новейшие усовершенствованные технологии — все это позволит вам превратить свои идеи в завершенные проекты быстрее, чем когда-либо.

Реализуйте все свои творческие идеи, не теряя время на ожидание. Процессор Intel® Core™ серии X справится с самыми ресурсоемкими рабочими нагрузками. Быстро редактируйте и публикуйте панорамные видео, а также наслаждайтесь видео виртуальной реальности в потрясающем качестве 4K. Новый компьютер предоставит вам неограниченные возможности для творчества.

Для создания своего лучшего шедевра вам потребуется максимальное быстродействие технологий для работы с несколькими задачами, активно задействующими ресурсы ЦП. Процессор Intel® Core™ серии X позволит вам редактировать видео, выполнять рендеринг 3D-эффектов и одновременно создавать саундтрек без ущерба для производительности компьютера.

В семействе процессоров Intel® Core™ серии X разблокирован множитель для обеспечения дополнительного запаса производительности. Среди новых функций: возможность оверклокинга каждого ядра в отдельности, управление коэффициентом AVX для повышения стабильности, а также управление напряжением VccU в экстремальных сценариях. В сочетании с такими инструментами, как Intel® Extreme Tuning Utility (Intel® XTU) и Intel® Extreme Memory Profile (Intel® XMP) вы получаете мощный набор для достижения максимальной производительности.

Раздвигайте границы возможного

Показать больше Показать меньше

www.intel.ru

Обзор процессора Core i9-7900X: предвестник ядерной войны

Обновление интеловской HEDT-платформы было запланировано уже очень давно. Ещё год назад, когда компания выпускала свои процессоры Broadwell-E, было известно, что они приходят всего на год и этим летом им на смену должны прийти более новые Skylake-X. Однако ничего особенно интересного от этого события не ожидалось. Примечательным в планирующемся анонсе было разве только то, что компания Intel собиралась сократить существующий архитектурный разрыв между массовыми и высокопроизводительными чипами и выпустить в рамках новой версии HEDT-платформы не только CPU, базирующиеся на дизайне Skylake (который был представлен ещё летом 2015 года), но и чипы с наиболее свежей архитектурой Kaby Lake. Впрочем, многоядерные процессоры для настольных систем должны были выйти лишь в семействе Skylake-X, а семейство Kaby Lake-X должно было включать лишь дополнительные и второстепенные четырёхъядерные чипы, по сути являющиеся аналогами массовых Kaby Lake для платформы LGA1151.

Таким образом, с точки зрения энтузиастов, платформа HEDT должна была продолжить своё планомерное движение привычным курсом: немного больше ядер, немного выше частоты, чуть иной сокет, немного возросшие цены и т. п. И мы нисколько не сомневаемся, что всё бы так и было, если бы этой весной не случился Ryzen. Новая архитектура, которую представила AMD, получалась настолько удачной, а ценовая политика этой компании оказалась настолько дерзкой, что Intel попросту не смогла оставить поползновения конкурента без какого-либо ответа. Тем более что AMD к тому же объявила о проекте Threadripper, в котором было заложено намерение посягнуть на святая святых – сегмент высокопроизводительных платформ с многоядерными процессорами, где Intel давно считала себя единственным и неповторимым игроком.

В результате новые процессоры Skylake-X, о которых мы ведём речь сегодня, получили два принципиально важных неожиданных изменения.

Первое: Intel решила не сдерживать себя в увеличении числа процессорных ядер, и в рамках новой платформы ожидаются десктопные CPU с 12, 14, 16 и 18 ядрами. Это значит, что впервые Intel будет предлагать энтузиастам не только адаптированные версии серверных процессоров Skylake-SP, основанные на самом простом варианте полупроводникового кристалла LCC (Low Core Count), но и процессоры на кристалле средней сложности HCC (High Core Count), что позволит более уверенно адресовать платформу HEDT аудитории профессионалов – создателям видеоконтента, моделлерам и разработчикам, работающим со сверхвысокими разрешениями и виртуальной реальностью.

Второе же изменение ещё более поразительно и касается ценовой политики. Процессоры Skylake-X стали значительно дешевле своих предшественников. Если в семействе Broadwell-E десятиядерный процессор стоил $1 723, то аналогичный по количеству ядер Skylake-X обойдётся всего в $999. Подобные изменения касаются и остальных представителей модельного ряда. В целом если раньше цены на старшие процессоры HEDT-класса формировались по принципу «$170 за ядро», то теперь для многоядерных Skylake-X будет действовать куда более либеральное правило «$100 за ядро».

В конечном же итоге новое воплощение HEDT-платформы становится более доступным и более приближенным к конечному пользователю. Число сценариев, где эта платформа может найти применение, возрастает, а входной порог понижается. Иными словами, процессоры Skylake-X и Kaby Lake-X уже не кажутся столь элитарными и статусными продуктами. Очевидно, что число желающих приобрести именно их, а не флагманские LGA1151-чипы, будет явно больше, чем раньше. И в этом обзоре мы подробнее познакомимся с новой HEDT-платформой и десятиядерным процессором Core i9-7900X – старшим на ближайшую пару месяцев вариантом Skylake-X, который уже через неделю появится на прилавках магазинов.

⇡#Процессоры Skylake-X: общие сведения

Новая HEDT-платформа компании Intel носит кодовое имя Basin Falls и представляет собой гораздо более комплексный и масштабируемый продукт, нежели высокопроизводительные платформы прошлых поколений, которые использовали процессорные разъёмы LGA2011 и LGA2011-3.

Ранее модельный ряд в каждом поколении HEDT-платформы включал всего лишь по три-четыре CPU, число ядер у которых различалось не более чем в полтора-два раза. Теперь же процессоров, совместимых с платформой Basin Falls, будет не менее девяти, причём разница в количестве ядер между самым простым и самым навороченным чипом будет более чем четырёхкратной. На этом фоне совершенно неудивительно, что новые HEDT-процессоры подразделяются на три группы, различающиеся по дизайну и архитектуре, но совместимые с одним и тем же процессорным гнездом LGA2066.

Ядра/ потокиБазовая частота, ГГцТурбо-режим, ГГцTurbo Boost Max 3.0, ГГцL3-кеш, МбайтЛинии PCI Express 3.0Каналы памятиЧастота памятиTDP, ВтЦена
Skylake-X (HCC)
Core i9-7980XE 18/36 ? ? ? ? 44 ? ? ? $1999
Core i9-7960X 16/32 ? ? ? ? 44 ? ? ? $1699
Core i9-7940X 14/28 ? ? ? ? 44 ? ? ? $1399
Skylake-X (LCC)
Core i9-7920X 12/24 ? ? ? ? 44 ? ? ? $1199
Core i9-7900X 10/20 3,3 4,3 4,5 13,75 44 4 DDR4-2666 140 $999
Core i7-7820X 8/16 3,6 4,3 4,5 11 28 4 DDR4-2666 140 $599
Core i7-7800X 6/12 3,5 4,0 Нет 8,25 28 4 DDR4-2400 140 $389
Kaby Lake-X
Core i7-7740X 4/8 4,3 4,5 Нет 8 16 2 DDR4-2666 112 $339
Core i5-7640X 4/4 4,0 4,2 Нет 6 16 2 DDR4-2666 112 $242

Пара наиболее простых чипов, Core i7-7740X и Core i5-7640X, располагает четырьмя ядрами с поддержкой технологии Hyper-Threading или без неё и относится к классу Kaby Lake-X. Они представляют собой на 100-200 МГц более быстрые аналоги Core i7-7700K и Core i5-7600K, перенесённые на другой сокет. Никакой разницы в архитектуре и в удельной производительности здесь нет, однако за счёт более либерального теплового пакета, намертво заблокированного графического ядра и изменений в схеме питания, возможно, некоторые улучшения произойдут в разгонном потенциале.

Мы подробно рассмотрим свойства представителей серии Kaby Lake-X в одном из следующих обзоров, благо их продажи должны начаться одновременно со Skylake-X в самое ближайшее время. Однако следует иметь в виду, что из-за особенностей своего происхождения Kaby Lake-X кажутся на фоне Skylake-X откровенно ущербными предложениями не только из-за небольшого числа ядер. В них также используется упрощённый двухканальный контроллер памяти и контроллер PCI Express, поддерживающий лишь шестнадцать линий. А это значит что, хотя Kaby Lake-X и предназначены для эксплуатации в составе платформы Basin Falls, реализовать существенную часть её ключевых преимуществ они не дадут.

Гораздо больший интерес для энтузиастов высокой производительности представляют процессоры Skylake-X: они позволяют использовать все возможности платформы Basin Falls в полной мере и могут рассматриваться как полноценные наследники прошлого поколения HEDT-чипов, Broadwell-E. Однако в поколении Skylake-X подход Intel под влиянием активных действий конкурента претерпел некоторые изменения, и новинки, относящиеся к этому классу, разделились на две группы: процессоры с относительно небольшим числом ядер и процессоры – многоядерные монстры.

Стандартная стратегия, которую микропроцессорный гигант всегда использовал при создании потребительских чипов для верхнего рыночного сегмента, заключалась в том, чтобы приспособить для таких нужд варианты серверных процессоров с относительно небольшим числом ядер, выпускаемые на основе полупроводниковых кристаллов LCC. И эта стратегия успешно работала на протяжении нескольких последних лет. Так, серверные процессоры традиционно подразделяются на три класса, для каждого их которых разрабатывается собственный дизайн полупроводникового кристалла: LCC (Low Core Count), HCC (High Core Count) и XCC (Extreme Core Count). В поколении Broadwell-EP к первому классу относились чипы с числом ядер до десяти, соответственно старшие потребительские LGA2011-3 CPU – это десятиядерники. В поколении Skylake-SP кристалл LCC получил уже двенадцать ядер. И вполне закономерно, что процессоры Skylake-X, которые были запланированы для платформы Basin Falls изначально, должны были получить от шести до двенадцати ядер.

Таким образом, все Skylake-X с числом ядер от шести до двенадцати и поддержкой технологии Hyper-Threading – это совершенно традиционные высокопроизводительные чипы для настольных компьютеров. Они основываются на одном и том же 14-нм 12-ядерном полупроводником кристалле LCC с микроархитектурой Skylake, в котором для формирования тех или иных моделей CPU может быть отключено до шести ядер. Кроме того, дифференциация в ряду таких процессоров происходит и по числу линий PCI Express, поддерживаемых встроенным в CPU контроллером. Старшие модели с десятью и двенадцатью ядрами предлагают 44 линии PCI Express, в то время как у процессоров с шестью и восемью ядрами контроллер PCI Express поддерживает только 28 линий.

Кристалл LCC: 12 ядер, площадь 325 мм2

Зато все варианты Skylake-X, основанные на кристалле LLC, имеют сравнительно высокие тактовые частоты. Тепловой пакет таких процессоров установлен в типичные для HEDT-платформы 140 Вт, но их частоты по сравнению с Broadwell-E заметно увеличены. Десятиядерный Core i9-7900X имеет базовую частоту 3,3 ГГц и может разгоняться в турборежиме до 4,3 ГГц; базовая частота восьмиядерного Core i7-7820X установлена в 3,6 ГГц с аналогичным турборежимом на уровне 4,3 ГГц, а паспортная частота шестиядерного Core i7-7800X равна 3,5 ГГц с возможностью автоматического разгона при невысокой нагрузке до 4,0 ГГц. Полные паспортные характеристики двенадцатиядерного Core i9-7920X пока не названы – этот процессор должен выйти только через пару месяцев.

Стоит обратить внимание и ещё на один интересный момент. С появлением платформы Basin Falls в ассортименте Intel появляются процессоры с именем Core i9. Таким образом Intel решила подчеркнуть элитарность отдельных моделей Skylake-X, которые, по всей видимости, будут напрямую противопоставляться AMD Threadripper. Но пока принцип присвоения имени Core i9 чисто формальный. Его получают процессоры с более чем 10 ядрами и 44 линиями PCI Express. А это значит, что до запланированного на август выхода 12-ядерника в линейке Skylake-X будет только один Core i9 – десятиядерный тысячедолларовый Core i9-7900X.

Но кстати говоря, не факт, что с выходом 12-ядерного Core i9-7920X текущий субфлагман Core i9-7900X на его фоне померкнет. То, что Intel не выпустила свой двенадцатиядерник вместе с остальными процессорами Skylake-X на кристалле LLC, связано с тем, что компания пока не может решить, сделать его более экономичным или более скоростным. В теории платформа LGA2066 поддерживает процессоры с типичным тепловыделением до 165 Вт, что позволяет установить частоты Core i9-7920X на достаточно высокой отметке, но Intel не хочет прибегать к этой мере во избежание проблем несовместимости с материнскими платами и системами охлаждения, которые наверняка могут возникнуть из-за того, что столь горячих процессоров компания ещё не выпускала. Поэтому и было решено выдержать некоторую паузу, в течение которой инженеры Intel надеются понять, насколько впечатляющей получится HEDT-платформа у компании AMD.

К тому же у Intel заготовлено ещё одно мощное средство, которое она может противопоставить HEDT-процессорам AMD, – чипы Skylake-X, базирующиеся на кристалле HCC. Этот кристалл имеет в своём составе 18 ядер и в перспективе позволит выпустить три дополнительные версии Core i9 с 14, 16 и 18 ядрами. Точные характеристики этих моделей по понятным причинам пока не определены, да и их выход запланирован лишь на октябрь. Однако, Intel уже сейчас хочет закрепить за собой звание производителя HEDT-процессоров с наибольшим числом ядер, оставляя, тем не менее, некоторое пространство для манёвра с частотами и тепловыделением.

Кристалл HCC: 18 ядер, площадь 484 мм2

В конечном итоге платформа Basin Falls выглядит заметным шагом вперёд. Skylake-X по сравнению с Broadwell-E получили внушительный и разносторонний набор улучшений. Начиная с того, что новые процессоры предлагают существенно возросшее число ядер и заметно поднявшиеся рабочие частоты, причём делают это при попутном снижении цены. И заканчивая тем, что в Skylake-X реализован более мощный четырёхканальный контроллер памяти с официальной поддержкой DDR4-2666, а также контроллер PCI Express 3.0 с увеличенным на четыре штуки числом линий. Попутно не стоит забывать и о новой микроархитектуре Skylake, которая сама по себе содержит целый ряд оптимизаций, позволяющих поднять удельную производительность при неизменной частоте.

И здесь нужно подчеркнуть ещё одну важную деталь. Микроархитектура ядер новых процессоров Skylake-X не просто повторяет привычную микроархитектуру Skylake образца 2015 года. В новых HEDT-продуктах добавлены дополнительные улучшения, про которые мы подробно расскажем ниже. В их числе: поддержка 512-битных векторных инструкций AVX-512, изменение подсистемы кеш-памяти, изменение топологии межъядерных соединений и новая версия технологии Turbo Boost Max 3.0, позволяющая поднимать частоты избранной пары ядер процессора до 4,5 ГГц.

⇡#Набор системной логики Intel X299 и LGA2066-материнские платы

Вместе с новыми процессорами Skylake-X и Kaby Lake-X компания Intel выводит на рынок и ответную часть платформы Basin Falls – новый набор системной логики X299. Впрочем, утверждать, что этот чипсет такой же новаторский, как сопутствующие ему процессоры, мы бы не стали. Если говорить о нём в двух словах, то следует сказать, что X299 приносит в HEDT-платформу лишь те возможности, которые уже давно стали стандартными для LGA1151-систем. Однако и такое изменение не стоит недооценивать. Чипсеты для LGA2011- и LGA2011-3-систем были гораздо менее функциональны. И если X299 сравнивать с X99, а не с Z270, то прогресс становится очевиден.

Главных перемен две. Во-первых, X299 получил стандартную HSIO-топологию (High-Speed IO). Это значит, что новый набор логики подобен PCIe-коммутатору: в нём есть 30 высокоскоростных портов, которые производители материнских плат могут гибко сконфигурировать под свои нужды и получить в конечном итоге необходимое число линий PCI Express 3.0, а также USB 3.0- и SATA 3.0-портов. Во-вторых, изменилась шина, по которой чипсет общается с процессором. Если в X99 для этих целей применялась шина DMI 2.0, то X299 перешёл на вдвое более скоростную шину DMI 3.0, во многом аналогичную PCI Express 3.0 x4.

Реализация топологии HSIO

Высокоскоростные порты чипсета позволяют получить из него в разных комбинациях до 24 линий PCI Express 3.0, до восьми портов SATA 3.0 и до десяти портов USB 3.0. Это почти эквивалентно возможностям Z270, и можно было бы подумать, что хаб X299 представляет собой вариацию набора логики от платформы LGA1151, но у X299 всё-таки есть уникальная черта – он поддерживает на пару SATA-портов больше. В остальном характеристики схожи. Причём это касается и того, что оба чипсета производятся по одному и тому же 22-нм техпроцессу, имеют одинаковое тепловыделение на уровне 6 Вт, и даже мало отличаются друг от друга внешне.

Честно говоря, от X299, который вместе с платформой Basin Falls приходит на сравнительно продолжительный срок, хотелось бы каких-то дополнительных возможностей, например поддержки USB 3.1 Gen 2 и WiFi, которая должна появиться уже в следующем поколении наборов логики для платформы LGA1151. Но ничего такого в X299 нет, и все подобные функции отданы на откуп производителям материнских плат, которые вновь будут вынуждены доукомплектовывать свои флагманские LGA2066-решения россыпью дополнительных контроллеров.

Зато в X299 есть поддержка накопителей Intel Optane и всех прочих функций, реализуемых через драйвер Intel RST 15. Это, в частности, означает, что из PCIe-накопителей, подключённых к чипсету, можно формировать RAID-массивы уровней 0, 1 и 5. Причём число участников в таких массивах может доходить до трёх.

Впрочем, учитывая богатый набор линий PCI Express, имеющийся у процессора, производители материнских плат наверняка будут реализовывать M.2-слоты, подключённые напрямую к CPU. Специально для таких случаев в платформе Basin Falls имеется дополнительная уникальная функция VROC (Virtual RAID On CPU). Она позволяет объединять в RAID-массивы любое количество PCI Express-накопителей, подключённых напрямую к процессору. Правда, в этой технологии заложены некоторые обидные программные ограничения. Например, для активации режимов RAID, отличных от RAID 0, от пользователя потребуется специальный ключ, который будет необходимо приобретать отдельно.

Вместе с новым набором логики процессоры Skylake-X и Kaby Lake-X требуют и новый 2066-контактный разъём LGA2066 (Socket R4). Необходимость во внедрении нового сокета в данном случае обуславливалась переходом на DMI 3.0 и появлением в процессоре нескольких дополнительных линий PCI Express, поэтому совместимости между новыми HEDT-процессорами и предшествующими платформами с разъёмом LGA2011-3 нет и быть не может.

Тем не менее по внешнему виду и габаритам LGA2066 почти не отличается от LGA 2011-3. И даже более того, Intel удалось сохранить полную совместимость со старыми системами охлаждения. Способ крепления кулеров к сокету остался таким же, как и раньше, не изменилось и расположение монтажных отверстий. Соответственно, старые кулеры для Haswell-E и Broadell-E подойдут для новых процессоров Skalake-X и Kaby Lake-X без каких-либо ограничений.

Поскольку процессоры Kaby Lake-X и Skylake-X очень серьёзно различаются по характеристикам, в том числе по числу процессорных линий PCI Express и числу каналов памяти, платформе LGA2066 свойственна гибкость, которая ранее ещё не встречалась. Согласно требованиям Intel к материнским платам с разъёмом LGA2066, все они обязаны поддерживать полную линейку LGA 2066-процессоров без каких-либо исключений. Это значит, что типовая LGA2066-плата должна позволять строить конфигурации как с двухканальной, так и с четырёхканальной подсистемой памяти, а также с 16, 28 или 44 линиями PCI Express, идущими от CPU.

И это на самом деле – далеко не простая задача, решение которой приводит к тому, что покупатели недорогих LGA2066-процессоров будут вынуждены переплачивать за возможности, которыми они, скорее всего, пользоваться никогда не будут. Хотя мы и не исключаем, что в продаже могут появиться платы, оптимизированные под младшие LGA2066-процессоры и имеющие сокращённое число слотов DIMM и PCI Express, в большинстве случаев ситуация, скорее всего, будет складываться так, что при установке Kaby Lake-X часть слотов на материнской плате будет оказываться недоступна для использования.

Что-то подобное будет происходить при установке Kaby Lake-X и младших версий Skalake-X не только со слотами DIMM, но и с процессорными слотами PCI Express. Часть из них может отключаться, а другая часть – переходить в более «слабые» скоростные режимы.

⇡#Новое в Skylake-X

⇡#Новая архитектура кеш-памяти

Процессоры Skylake-X нельзя рассматривать как простой перенос хорошо знакомой микроархитектуры Skylake на многоядерный дизайн. За прошедшие с момента её появления два года инженеры Intel провели определённую работу и внесли некоторые изменения в изначальный проект. Поэтому процессоры Skylake-X можно считать носителями обновлённой версии базовой микроархитектуры, что в конечном итоге наделяет их несколько отличающейся удельной производительностью (в пересчёте на частоту). И самое главное усовершенствование касается переделки подсистемы кеш-памяти с целью повышения эффективности её работы.

В HEDT-процессорах прошлых поколений (так же как и в Xeon) архитектура кеш-памяти предполагала выделение на каждое ядро собственных L1- и L2-кешей и наличие единого на все ядра L3-кеша, который был инклюзивным и имел внушительный объём. Это означало, что все данные, которые находились в L2-кеше, дублировались и в L3, однако, если данные из L2-кеша вытеснялись, они всё ещё оставались доступны в L3. Такая схема работы была достаточно выгодна, и её эффективность во многом поддерживалась правильно подобранным соотношением между объёмами кеш-памяти разных уровней. В то время как L2-кеш имел ёмкость 256 Кбайт, объём кеша третьего уровня формировался из расчёта от 1,5 до 2,5 Мбайт на ядро. В результате, несмотря на затратный инклюзивный алгоритм, L3 сохранял достаточно места для независимой работы с данными.

Однако в Skylake-X баланс было решено изменить. Учитывая, что L2-кеш имеет гораздо лучшие показатели латентности, и его вместимость сильнее сказывается на производительности, в новых процессорах его объём было решено увеличить до 1 Мбайт, то есть в четыре раза. При этом, чтобы не выходить за рамки приемлемого транзисторного бюджета, сделано это было одновременно с уменьшением разделяемого между ядрами L3-кеша, объём которого в Skylake-X теперь определяется из расчёта 1,375 Мбайт на ядро.

Попутно, чтобы сохранить эффективность L3-кеша при серьёзном уменьшении объёма, был изменён алгоритм его функционирования. Теперь этот кеш не инклюзивный, и более того – он виктимный. Это значит, что L3-кеш наполняется исключительно за счёт вытеснения данных из L2, и механизмы предварительной выборки данных на него не распространяются. В конечном итоге это значит, что, в то время как эффективный суммарный размер кеш-памяти у процессоров Haswell-E и Broadwell-E составлял 2,5 Мбайт на ядро, у Skylake-X он остался почти таким же – 2,375 Мбайт на ядро. Однако система кеширования Skylake-X должна обеспечивать в среднем меньшие задержки, поскольку существенная часть кеш-памяти – второго уровня, для которой характерна небольшая латентность.

Подробнее структура кеш-памяти Skylake-X описана в таблице:

Broadwell-ESkylake-X
L1D-кеш 32 Кбайт на ядро, 8-канальная ассоциативность 32 Кбайт на ядро, 8-канальная ассоциативность
L1I-кеш 32 Кбайт на ядро, 8-канальная ассоциативность 32 Кбайт на ядро, 8-канальная ассоциативность
L2-кеш 256 Кбайт на ядро, 8-канальная ассоциативность 1024 Кбайт на ядро, 16-канальная ассоциативность
L3-кеш

25 Мбайт на процессор, 20-канальная ассоциативность

Частота – 2,8 ГГц

13,75 Мбайт на процессор, 11-канальная ассоциативность

Частота – 2,4 ГГц

При этом L3-кеш процессоров Skylake-X явно стал хуже и по алгоритму работы, и по ассоциативности (то есть по эффективности), и по объёму, и даже по частоте работы. Однако всё это, по мнению инженеров Intel, должно компенсироваться более вместительным L2-кешем с вдвое более высокой ассоциативностью. Согласно выкладкам, представленным разработчиками, расширение размера L2-кеша в четыре раза удваивает вероятность нахождения в нём необходимых процессору данных. А это, в свою очередь, снижает простои исполнительного конвейера и, согласно мнению инженеров Intel, повышает удельную производительность на дополнительные 5-10 процентов. Таким образом, благодаря изменениям в подсистеме кеш-памяти процессоры Skylake-X должны превосходить привычные Skylake-S и Kaby Lake-S даже на однопоточной нагрузке.

Впрочем, прежде, чем принимать такие утверждения на веру, давайте посмотрим, как обстоит дело с реальной латентностью подсистемы кеш-памяти в процессорах Broadwell-E и Skylake-X. Для этого с помощью тестового пакета SiSoft Sandra мы измерили реальную латентность при обращении процессоров к блокам данных различного размера. Оба процессора, участвующие в тесте, работали на одинаковой 4-гигагерцевой частоте и были укомплектованы четырёхканальной DDR4-3000 SDRAM с CAS Latency 15.

Откровенно говоря, ситуация с реальной латентностью подсистемы кеш-памяти Skylake-X смотрится не слишком воодушевляюще. Старые процессоры Broadwell-E почти всегда обеспечивают более низкое время доступа к данным, за исключением случая, когда у них они не умещаются в L2-кеш, но влезают в него у Skylake-X. Поэтому правоту утверждений Intel можно подвергнуть сомнению. Кажется несколько неправдоподобным, что демонстрируемого выигрыша в латентности будет достаточно для того, чтобы Skylake-X смогли получить какое-то преимущество в производительности в реальных приложениях.

Однако справедливости ради стоит отметить более высокую практическую пропускную способность подсистемы кеш-памяти Skylake-X, что может служить некоторой компенсацией в ситуации с задержками.

Особенно радует на фоне высокой латентности пропускная способность L3-кеша. Вместе с пересмотром его архитектуры инженеры Intel смогли добиться существенного увеличения и полосы пропускания. Почему так произошло, станет понятно из следующего раздела.

⇡#Изменения в топологии межъядерных соединений

Вместе с изменением в системе кеширования компания Intel полностью переделала схему, которая применяется для организации межъядерного взаимодействия. Напомним, со времён Sandy Bridge для соединения процессорных ядер и обмена данными с L3-кешем и контроллером памяти в процессорах Intel использовалась основанная на протоколе QPI двунаправленная 256-битная кольцевая шина. И до тех пор, пока процессоры содержали не слишком большое число ядер, такой подход был очень эффективен. Достаточно простое схемотехническое решение действительно позволяло добиваться передачи данных с минимальными задержками.

Однако с ростом числа ядер маршруты на пути данных начали удлиняться, и это стало вызывать серьёзные проблемы. Для обеспечения слаженной работы многоядерных процессоров Intel даже пришлось перейти к схеме с разделением ядер на два кластера и внедрением двух кольцевых шин, связанных между собой двумя буферизирующими мостами. Но такое соединение ядер, контроллеров памяти и контроллеров ввода-вывода внутри процессора уже не могло похвастать былой эффективностью. В случае если возникала необходимость в передаче данных между точками, находящимися в различных кластерах, латентности сильно страдали. И в конечном итоге Intel пришла к ситуации, когда кольцевая шина стала препятствием на пути увеличения пропускной способности и снижения задержек при внутрипроцессорных операциях с данными.

Поэтому в серверных процессорах Skylake-SP (и родственных с ними HEDT-процессорах Skylake-X), где число ядер может достигать 28 штук, Intel перешла к иной схеме межъядерных соединений – ячеистой сети, которая уже хорошо обкатана в Intel Xeon Phi (Knights Landing). Число соединений в ней гораздо больше, поскольку все ядра на кристалле пронизаны сквозными горизонтальными и вертикальными линками. Но за счёт этого маршруты, необходимые для связи ядер и прочих функциональных узлов, заметно упрощаются, уменьшая латентности и уравнивая задержки, которые возникают при различных взаимодействиях внутри такой сети. Кроме того, такая сеть обеспечивает более высокую суммарную пропускную способность.

Данное изменение позволяет установить частоту этой сети ниже частоты кольцевой шины, сохранив при этом высокие показатели пропускной способности. А это значит, что новая ячеистая структура соединени не только хороша сбалансированностью и масштабируемостью, но и выигрывает с точки зрения потребления ресурсов.

Естественно, всё это важно в первую очередь для серверных процессоров с большим числом ядер, однако Skylake-X оказались заложниками ситуации: в них ячеистая сеть тоже заменила собой кольцевую шину. И в сравнительно простых случаях, когда число ядер не столь велико, латентности при межъядерном взаимодействии по сравнению с Broadwell-E ухудшились. Для проверки мы измерили латентности, возникающие при передаче данных от одного ядра к другому для десятиядерного Broadwell-E и Skylake-X. Оба процессора для чистоты эксперимента работали на одной и той же частоте 4,0 ГГц.

Как видно по иллюстрации, задержки при межъядерном взаимодействии у Skylake-X примерно в полтора раза выше. И это недвусмысленно говорит о том, что ячеистая сеть никакого выигрыша в случае десяти ядер не даёт, а напротив, только ухудшает ситуацию.

Хорошо заметным результатом произошедших перемен стали изменения в скорости работы подсистемы памяти. Поскольку контроллеры DDR4 в процессорах Intel связаны с ядрами посредством той же самой шины, что и ядра между собой, скорость работы подсистемы памяти напрямую связана с эффективностью схемы межъядерных соединений.

С помощью теста Cachemem из пакета AIDA64 мы измерили производительность подсистемы памяти, составленной из четырёх идентичных модулей DDR4-3000 SDRAM, у работающих на одинаковой частоте 4,0 ГГц процессоров Broadwell-E и Skylake-X, и диагноз подтвердился. Задержки внутри чипов нового поколения действительно стали выше.

Слева – результат Broadwell-E, справа – Skylake-X. Оба процессора работают на частоте 4,0 ГГц с DDR4-3000 15-17-17-35

Правда, справедливости ради стоит отметить тот факт, что вместе с латентностью выросла и практическая пропускная способность при чтении из памяти, что при потоковых операциях с большими объёмами данных может компенсировать возросшие задержки. Однако утешение это – достаточно слабое, поскольку в реальных задачах латентность подсистемы памяти оказывает на производительность весьма серьёзное влияние.

⇡#Поддержка инструкций AVX-512

Говоря о том, какие изменения в микроархитектуре Skylake приурочены к выходу высокопроизводительных процессоров Skylake-X, нельзя не упомянуть, что в них появилась поддержка нового набора векторных инструкций AVX-512. Впервые он был реализован в последнем поколении ускорителей вычислений Xeon Phi (Knights Landing), а теперь его поддержка добралась и до традиционных процессоров для серверов, рабочих станций и высокопроизводительных десктопов.

По сути набор AVX-512 представляет собой расширение векторных команд для операций с 512-битными векторами. В нём новые 512-битные регистры, новые упакованные форматы для целых и дробных чисел, а также разнообразные операции над ними. Важной особенностью режима AVX-512 выступает высокая скорость их выполнения: предполагается, что процессор может переходить с обычных 256-битных AVX-инструкций на 512-битные операции без снижения быстродействия. И этот факт позволяет Intel преподносить перспективный 18-ядерник как первый десктопный процессор с производительностью на уровне 1 Тфлопс.

Иными словами, введение AVX-512 позволяет удвоить производительность, однако речь здесь идёт исключительно о векторных операциях. При условии оптимизации под новые команды параллельные алгоритмы действительно могут исполняться на Skylake примерно вдвое быстрее, однако это, естественно, не распространяется на обычные вычисления общего назначения. Тем не менее вторгнуться на территорию, где ранее в расчётах применялись только видеокарты, процессоры Skylake-X вполне способны.

Стоит отметить, что появление в Skylake-X поддержки AVX-512 – не только усовершенствование, направленное на будущее. Некоторые существующие алгоритмы имеют нужные оптимизации уже сейчас и способны получать преимущество в производительности. К их числу, например, относится популярный кодер x264, в котором сообщество внедрило поддержку новых команд ещё в начале этого года.

Оценить же, насколько инструкции AVX-512 способны поднять производительность вычислительных алгоритмов в случае, близком к идеалу можно по синтетическому тесту Processor Multimedia из пакета SiSoft Sandra. Этот простой бенчмарк измеряет скорость построения множества Мандельброта с использованием различных наборов команд. С его помощью мы сравнили производительность десятиядерных Broadwell-E и Skylake-X, работающих на одинаковой частоте 4,0 ГГц.

Как видно по результатам, одно только использование 512-битных векторных инструкций позволяет ускорить вычисления на величину от 20 до 85 процентов. А если к этому прибавить прочие заложенные в Skylake-X архитектурные улучшения, то получается, что по удельной производительности этот CPU может превосходить Broadwell-E более чем в два раза.

⇡#Улучшенная технология Intel Turbo Boost Max 3.0

С выходом процессоров Broadwell-E компания Intel представила технологию Turbo Boost Max 3.0, эксплуатирующую тот факт, что ядра в многоядерном процессоре со сравнительно крупным полупроводниковым кристаллом могут существенно различаться по своему частотному потенциалу. Идея заключалась в том, что среди ядер процессора наверняка есть такое, которое может работать на более высокой частоте и при более низком напряжении, поэтому малопоточную нагрузку логично исполнять именно на нём.

Intel воплотила этот принцип через специальный драйвер, который переносил однопоточные приложения на такое предварительно отобранное для этих целей на этапе производство ядро. Производители материнских плат должны были через BIOS реализовать возможность повышения рабочей частоты этого единичного ядра на дополнительные несколько сотен мегагерц относительно значений, предусмотренных классической технологией Turbo Boost 2.0. В результате многоядерные процессоры Broadwell-E, имеющие относительно невысокие номинальные частоты, получали возможность решать однопоточные задачи с неплохой эффективностью.

Драйвер Turbo Boost Max 3.0. Список ядер составлен по приоритету, сверху – более удачные

В Skylake-X эта идея получила дальнейшее развитие. Теперь в процессоре для малопоточной нагрузки выбирается сразу два специальных ядра, что даёт возможность получать более высокую производительность при запуске сразу двух однопоточных приложений либо при работе в приложениях, которые могут использовать два ядра одновременно.

Правда, поплатиться за это пришлось допустимой в рамках Turbo Boost Max 3.0 прибавкой к частоте. Если в процессорах Broadwell-E данная технология могла поднимать частоту выбранного ядра на 200-500 МГц, то в Skylake-X дополнительное ускорение ограничивается лишь величиной 200 МГц.

Впрочем, связано это может быть и с тем, что в новом поколении HEDT-процессоров очень агрессивно проявляет себя и классическая технология Turbo Boost 2.0, оставляя для работы Turbo Boost Max 3.0 не слишком много свободного пространства.

⇡#Подробности о Core i9-7900X

Для тестирования компания Intel предоставила нам старший на данный момент процессор семейства Skylake-X, десятиядерный Core i9-7900X. Напомним, его продажи начнутся уже через неделю, а более мощные представители серии появятся только в августе (12-ядерные Skylake-X) или в октябре (14-, 16- и 18-ядерный Skylake-X).

Внешний вид LGA2066-процессора немного отличается от привычных очертаний LGA2013-3-процессоров, однако разница не кардинальная. Форма и размеры остались примерно теми же, фактически заметно выделяются лишь иначе оформленные края теплорассеивающей крышки.

 

Однако теперь эта крышка не припаивается к полупроводниковому кристаллу процессора, а контактирует с ним через термопасту.

В диагностической утилите CPU-Z новый Core i9-7900X выглядит не совсем очевидно.

Обратите внимание, утилита определяет этот процессор как Core i7-7900X, и это – не ошибка в программе. Такое наименование действительно зашито в самом процессоре в качестве идентификационной строки. Дело в том, что Intel решила использовать марку Core i9 совсем недавно, и разосланные обозревателям инженерные образцы содержат вариант названия, запланированный изначально.

В остальном все характеристики образца Core i7-7900X полностью соответствуют тому, как будут выглядеть серийные процессоры Core i9-7900X. Об этом, в частности, свидетельствует серийный степпинг ядра – H0.

Ситуация с реальными рабочими частотами Core i9-7900X складывается следующим образом:

  • При обычной многопоточной нагрузке на все ядра частота чаще всего находится на уровне 4,0 ГГц.
  • Если многопоточная нагрузка носит особенно ресурсоёмкий характер, например использует AVX-инструкции, частота может снижаться вплоть до 3,3-3,6 ГГц.
  • При однопоточной нагрузке частота под влиянием технологии Turbo Boost Max 3.0 может повышаться до обещанных 4,5 ГГц. Однако такой автоматический разгон наблюдается не всегда, а в ряде ситуаций частота при таких условиях достигает лишь 4,1 ГГц.

Тепловой режим процессора, функционирующего в номинале, никаких вопросов не вызывает, несмотря на замену припоя под процессорной крышкой полимерным термоинтерфейсом. При тестировании Core i9-7900X в LinX 0.7.2 (а эта версия уже имеет поддержку новых инструкций AVX-512) с использованием однобашенного кулера Noctua NH-U14S максимальные температуры по внутрипроцессорному датчику доходили лишь до 74 градусов, в то время как максимально допустимой температурой для Skylake-X считаются 105 градусов.

Всё это наводит на мысли, что интеловская термопаста в Skylake-X работает эффективнее, чем в LGA1151-процессорах. То ли изменился её состав, то ли роль играет заметно большая площадь полупроводникового кристалла, которая у LLC составляет примерно 325 мм2 (против 122 мм2 у четырёхъядерного Skylake-S).

В сравнении со своим предшественником, десятиядерным Broadwell-E, новый Core i9-7900X однозначно выигрывает в характеристиках.

Core i7-6950XCore i9-7900X
Кодовое имя Broadwell-E Skylake-X
Технология производства 14 нм, FinFET 14 нм, FinFET
Ядра/потоки 10/20 10/20
Технология Hyper-Threading Есть Есть
Базовая частота, ГГц 3,0 3,3
Максимальная частота в турборежиме, ГГц 3,5 4,3
Максимальная частота Turbo Boost Max 3.0, ГГц 4,0 4,5
Разблокированный множитель Есть Есть
TDP, Вт 140 140
L2-кеш, Кбайт 10 × 256 10 × 1024
L3-кеш, Мбайт 25 13,75
Число линий PCI Express 3.0 40 44
Поддержка DDR4 SDRAM Четыре канала DDR4-2400 Четыре канала DDR4-2666
Расширения набора инструкций SSE4.1/4.2, AVX 2.0 SSE4.1/4.2, AVX 2.0, AVX-512
Упаковка LGA 2013-3 LGA 2066
Цена $1 723 $999

С переходом на новую архитектуру рабочие частоты выросли на 10-30 процентов (в зависимости от режима), на официальном уровне появилась совместимость с DDR4-2666 SDRAM, добавилась поддержка AVX-512-инструкций, а также возрос объём кеш-памяти второго уровня. В минусе оказался лишь объём L3-кеша, который уменьшился почти вдвое. Впрочем, самое главное изменение обозначено в последней строке таблицы: десятиядерник теперь стоит на 42 процента дешевле.

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

3dnews.ru

Про разгон: Как разогнать процессор Intel Core i9-7900X?

Летом этого года Intel подготовила новый бренд Core i9 и первым представителем этой линейки стал процессор Intel Core i9-7900X, который заслуживает много внимания. Еще бы Core i9-7900X отличается 10 физическими ядрами, 20 потоками и, как бы это странно не звучало, но это самый бюджетный процессор новой HEDT-платформы с 44 PCI линиями. Конечно. такая мощь не может стоить дешево и оценена в 999$ ну или, в среднем, 65 тысяч рублей согласно данным Яндекс.Маркет.Даже несмотря на впечатляющий заводской буст с номинальных частот 3.3 ГГц до 4.3 ГГц для всех ядер и еще для двух наиболее удачных до 4.5 ГГц, данный процессор способен на большее, стоит его только разогнать, а как это сделать наиболее быстро и просто, рассмотрим в этом материале.

Зачем разгонять Intel Core i9-7900X?

Как мы знаем, разгон процессора иногда помогает выжать дополнительную производительность, которая может выражаться в более быстром рендере видео, обработке сложных графических файлов ну или более быстром просчете кадров в играх. Как правило, именно получение дополнительной производительности заставляет нас заниматься разгоном, но помимо этого стоит отметить, что Intel Core i9-7900X так же получил заслуженный интерес у оверклокеров и на данный момент максимальная частота, которой удалось достичь на этом процессоре — 6 304 МГц. Но в наших интересах получить более обыденные частоты 4.5-4.7 ГГц с сохранением полной стабильности.

Что потребуется для разгона Intel Core i9-7900X?

Конечно, помимо самого процессора нам будут нужны и другие комплектующие и выбор начнем с материнской платы. Стоит помнить, что Intel Core i9-7900X все же 10-ядерный процессор и питания ему нужно не мало, особенно в разгоне. По этой причине стоит присмотреться к материнским платам с двумя коннекторами питания и не стоит обращать внимание на самые дешевые варианты, в которых производители значительно сэкономили на системе питания. В целом, неплохую материнскую плату под разгон можно приобрести примерно от 18 тысяч рублей. Ну а если говорить о лучшем решении для разгона процессоров Intel Skylake-X/Kaby Lake-X  — это однозначно ASUS ROG Rampage VI Apex. Именно ASUS ROG Rampage VI Apex помогла поставить наибольшее количество абсолютных мировых рекордов оверклокерам по всему миру.  Оверклокинг же, в нашем режиме, без проблем удастся на материнских платах среднего уровня протестированных нами: ASUS TUF X299 Mark 1, ASUS ROG Strix X299-E Gaming, MSI X299 Gaming Pro Carbon или MSI X299 Tomahawk.Следующий важный компонент — система охлаждения, как правило, из высокого энергопотребления вытекает и высокое тепловыделение и справиться с ним не может ни одна система воздушного охлаждения и здесь стоит задуматься о хорошей системе жидкостного охлаждения хотя бы типа «все в одном». Лично в моем стенде установлена самая большая серийно выпускаемая жидкостная система охлаждения «все в одном» — Alphacool Eisbaer 420 CPU и лично я рекомендую трехсекционные системы жидкостного охлаждения.Так же под разгон столь мощного процессора не стоит мелочиться на блоке питания. Рекомендую присмотреться к моделям ведущих производителей: SeaSonic, Chiftec, Enermax, FSP, Cooler Master, Thermaltake, Corsair и ни в коем случае не обращать внимание на всевозможные NoName пусть и по привлекательной цене. Некачественный блок питания выходя из строя может «утащить» за собой всю вашу систему.Отдельно стоит обратить внимание на оперативную памяти и накопители данных. В некоторых задачах производительность оперативной памяти сильно влияет на скорость выполнения вычислений, а медленный накопитель в некоторых задачах может значительно снизить скорость их выполнения или вызвать фризы в играх с открытым миром.

Конфигурация тестового стенда

ПроцессорIntel Core i9 — 7900X
Система охлаждения процессораAlphacool Eisbaer 420
Материнская платаASUS ROG Rampage VI Apex
Оперативная памятьHyperX DDR4 4х8 Гб 3333 МГц
ВидеокартаASUS ROG Strix GTX 1070 Ti OC Edition
HDDWD Red 2TB
SSDHyperX Savage 240 Гб
Блок питанияSeaSonic SnowSilent 750W
Операционная системаWindows 10 Pro

С чего начать разгона Intel Core i9-7900X?

Одна из особенностей новых HEDT-процессоров в том, что под их теплораспределительной крышкой находится не припой, как это было раньше, а пластичный термоинтерфейс(термопаста) и огромным недостатком я бы это не считал, но это заставляет нас больше внимания уделять температурам процессора. Здесь стоит упомянуть еще и поддержку процессором инструкций AVX512. выполняемых пакетами и серьезно повышающих во время выполнения температуры и, соответсвенно, энергопотребление.

Начнем разгон мы с UEFI(BIOS), в нашем случае, — это вариант от ASUS, но от производителя к производителю основные параметры все примерно одинаковые. И начнем с выставления необходимого множителя, в параметре CPU Core Ratio стоит выставить параметр Sync All Cores, и после в параметр Core Ratio проставить множитель 45. Этими действиями мы задаем единый для всех ядер множитель 45, что при базовой частоте 100 МГц заставляет работать процессор на частоте 4.5 ГГц на всех ядрах.Как правило, частота 4.5 ГГц высоковата для исполнения AVX инструкций, а тем более AVX-512, поэтому стоит ограничить множитель во время выполнения AVX инструкций. Для этого стоит воспользоваться параметрами AVX Instruction Core Ratio Negative Offset и AVX-512 Instruction Core Ratio Negative Offset в этих параметрах стоит указать число, на сколько стоит снизить множитель во время выполнения AVX инструкций. Для AVX-512 наиболее актуальны частоты от 3.7 ГГц до 4.0 ГГц, дальше процессор попросту будет перегреваться и уходить в тротлинг. Во время исполнения инструкций AVX2 наиболее актуальны частоты 4.0-4.3 ГГц.После следует поработать над установкой вольтажа. В параметре CPU Core Voltage установить параметр Adaptive Mode. Важно во время установки вольтажа помнить один простой момент — пусть процессоры внешне и выглядят одинаково, но разные образцы одной и той же модели процессора могут быть более или менее удачными, так один процессор может без проблем работать на частоте 5 ГГц, а другой, к примеру, больше чем на 4.5 ГГц запустить не получиться. Для процессоров Intel Core X я бы рекомендовал максимальный вольтаж не превышающий 1.3V,  так как при превышении этого значения требования к системе охлаждения значительно повышаются.Далее не стоит забывать про установку оптимальной частоты и таймингов для оперативной памяти. В некоторых задачах оперативная память значительно влияет на производительность и это не стоит упускать из виду. Про разгон оперативной памяти мы поговорим в последующих записях, а сейчас обойдемся установкой XMP-режима.После всех проделанных нами манипуляций следует сохранить параметры и загрузиться в Windows для проверки стабильности системы. После успешной загрузки системы стоит проверить стабильность при помощи стресс-тестов LinX и Aida64. если данные тесты пройдены успешно на протяжении 20 минут, то для полной уверенности можно запустить бенчмарк Prime95, ну и немного прогнать систему в процессорозависимых играх типа Battlefield 1 или Watch Dogs 2. Во время проведения тестов желательно наблюдать за температурами процессорных ядер и за его троттлингом, наиболее удобно наблюдать за этими параметрами в небольшой утилите HWinfo.

Если все тесты пройдены успешно, следует вернуться в UEFI(BIOS) и установить больший множитель, данные действия стоит повторять до потери стабильности системы, после вернуться в UEFI(BIOS) и установить множитель на котором сохраняется стабильность системы. Например, в нашем случае процессор Intel Core i9 — 7900X работает стабильно на частоте 4.6 ГГц и вольтаже 1.30V, а на частоте 4.7 ГГц процессор успешно проходит валидацию, но при выполнении ресурсоемких задач система может произвольно отключатся.

Результаты разгона процессора Intel Core i9-7900X?

Конечно, после успешного разгона стоит оценить результаты увеличения производительности в бенчмарках, рабочих задачах и играх. Результаты тестов приведены ниже. Исходя из результатов тестов, прирост производительности в зависимости от задачи составил от 5 до 10%, что не так уж и много, но даже такая прибавка к производительности может считаться приятным бонусом.

Выводы

Разгон процессора, как мы убедились, дело не сложное и даже HEDT-процессоры, например Intel Core i9-7900X, легко ему поддаются и позволяют получить дополнительную производительность. Если вам интересна тема разгона компьютерного железа, подписывайтесь в нашу группу ВК и голосуйте за интересный для вас материал в опросе по ссылке.

Актуальные цены на процессоры

najdidevice.ru

Intel Core i9 7900X review: the best around, but the worst time to buy a high-end CPU

We’re going to look back on last year as a genuine WTF?! moment in CPU tech. And this inaugural i9 processor, the Intel Core i9 7900X, is one of the bits of silicon we’ll hold up to exemplify all the weirdness.

There’s a whole lot of serious silicon out there right now, so check out our pick of the best CPUs for gaming so you know where to spend your upgrade cash.

The Core i9 7900X is a ten-core $969(£780) processor. Last year, that would have made it the tippy top of Intel’s high-end desktop (HEDT) tech tree, but this year it’s the bottom rung of the new Core i9 range, and sits in the middle of the entire X-series CPU stack.

Yeah, a ~$1,000 CPU as a mid-ranger. Told you times were weird.

As much as Intel are keen to keep on trotting out the old‘none of this has anything to do with AMD, honest’ line we know that, without increased AMD Threadripper-shaped competition from the red team, we wouldn’t be looking at a new range of processors topping out at a ludicrous 18 cores.

But none of that has happened yet. The Core i9 7980XE is a $2,000 chip, after a few hastily scribbled drawings on the back of an engineer’s napkin left in the Intel canteen. AMD’s 16-core offerings though offer a far more tantalising prospect for anyone looking for a high core-count CPU.

So, with Threadripper around

, is there anything to be gained from trying to get your mitts on a Core i9 7900X right now?

Click on the jump links below to get to your chosen section double-quick.

Intel Core i9 7900X architecture

The i9 7900X is only the second decacore CPU Intel have produced, with last year’s Broadwell-E Core i7 6950X being the first to land in a consumer desktop. It’s built on the updated 14nm CPU architecture Intel first introduced with the Skylake range of mainstream processors at the end of 2015. Since then, we’ve had the subsequent Kaby Lake update, with the likes of the Core i7 7700K and i5 7600K. Intel are also bringing that same architecture to bear on their HEDT range with the Kaby Lake-X Core i7 7740X and Core i5 7640X chips.

In real terms, there’s not a lot of difference between the earlier Skylake and Kaby Lake updates, so it makes sense for Intel to bring the HEDT chips up to date with their current chip architecture for the first time. Traditionally, the HEDT range has been a couple of generations behind the mainstream market. On the surface, there’s not a lot between those designs and the older 14nm Broadwell-E one either, but there are a few key underlying differences which Intel have brought to bare with the new Skylake-X architecture.

The main one being Intel’s introduction of a new mesh architecture, brought in from the Xeon server side of the business, to replace the previous ring bus CPU design. It’s essentially a new set of interconnects to sit inside the CPU, specifically designed to cater to the demands of chips with many more cores than they’ve previously been specced out for.

It’s roughly analogous to AMD’s Infinity Fabric, which connects the two quad-core Zen modules in their octacore Ryzen CPUs. Y’know, the ‘glue’ that Intel have previously mocked the red team for using to connect the Zen modules in their AMD Threadripper design.

The old ring bus was starting to look a little out of touch with Broadwell-E’s high-core-count chips, with it providing an increasingly circuitous route for data shifting between core components. The new mesh system has more of a cross die grid structure, which Intel claims provides higher bandwidth and lower latency – while also operating at a lower frequency and therefore lower voltage – than the ring design.

Intel have switched around the cache hierarchy on the Skylake-X chips too. They’ve decreased the L3, last-level cache (LLC), on a per-core basis, but are providing more low-latency L2, mid-level cache (MLC). That manifests itself as a reduction from 2.5MB L3 cache/core with Broadwell-E down to 1.375MB/core with Skylake-X, but with an increase from 256KB/core of MLC up to a full 1MB/core. The shared LLC is great for distributing data across cores, but by enlarging the amount of responsive MLC cache dedicated to each core, Intel claim they are able to boost core performance too.

In memory news, the platform’s quad-channel DDR4 support has been increased from Broadwell-E’s 2,400MHz max to a 2,666MHz standard with the Skylake-X chips. Well, all except the bottom-end hexcore i7 7800X, which has the old specification.

Intel have also implemented a new version of Turbo Boost Max. With the Skylake-X CPUs, the chips are able to identify the two fastest cores within their processor package and utilise those specifically for less thread-intensive workloads – that ought to be good for game loads as they should be able to max out the speed on specific cores doing the majority of the gaming grunt work. The Broadwell-E chips, by comparison, were only able to identify the quickest single core and prioritise that.

We also get a whole new socket with the new X-series. The X299 chipset comes with the LGA 2066 socket housing, you guessed it, 2,066 pins for you to accidentally jam your thumbs into and b0rk your board. Good times.

Intel Core i9 7900X specs

That’s the broad overview, but, in terms of specifics, the Core i9 7900X is a ten-core CPU making full use of Intel’s HyperThreading technology to deliver a hefty 20 threads of processing goodness to the user. That, in itself, is not massively exciting, given that we had our first taste of such a multicore CPU last year, but the speed at which Intel have got the first Core i9 running is impressive.

The first Intel decacore, the Core i7 6950X, had a base clock of just 3GHz and a Turbo frequency of 3.5GHz. Once in a blue moon, if the wind is blowing in the right direction, and you’ve completed the necessary incantations in perfectly pronounced Esperanto, you might be able to get the single-core frequency up to 4GHz. The Core i9 7900X has a base clock of 3.3GHz, which doesn’t make it seem a huge amount quicker than its forebear, but the big difference is that Turbo speed of 4.3GHz.

That’s not just a single-core boost clock either. In our MSI X299 Gaming M7 ACK test board, the 7900X runs with all cores at 4.3GHz whenever it’s being pushed by CPU-intensive applications. Intel have also given it a Turbo Boost Max frequency of 4.5GHz, but the gods were obviously displeased with us as we never saw hide nor hair of such speed in stock configuration. I fear for this year’s harvest… we must consult the oracle.

Because of the rejigged Skylake-X cache hierarchy, the 7900X has a slightly smaller total cache than the 6950X’s 25MB. The 7900X, by contrast, has 10MB of L2 and 13.75MB of L3 cache for a 23.75MB total. Y’know, just in case you couldn’t do the maths by yourself.

It’s also got a few more PCIe lanes too, rocking a full 44 PCIe 3.0 lanes direct from the CPU itself as opposed to the 40 of the 6950X. There’s a big step down from the Core i9 7900X to the eight-core i7 7820X, which has just 28 lanes by comparison. If you’re wanting to build yourself a mighty multi-GPU machine then the 7900X looks like it’s got the goods, though the upcoming AMD Threadripper chips will all have 64 PCIe 3.0 lanes…

Intel Core i9 7900X benchmarks

Intel Core i9 7900X performance

Guess what, it’s quick. Actually the i9 7900X is the quickest processor I’ve ever tested. Intel have launched the fastest desktop processor ever and it’s not even going to be the most powerful X-series CPU in the range. Golly. That makes the Core i9 7900X a tough act to follow, not just for AMD’s Threadripper, but also for the rest of Intel’s HEDT range.

It’s got unprecedented multi-threaded performance, easily topping last year’s inaugural ten-core 6950X, making AMD’s octacore Ryzen 7 1800X look every inch the half-price option. The i9 7900X, thanks to that impressively high all-core Turbo clockspeed, also has some serious single-threaded chops too.

But that doesn’t always translate into a big performance lead in-game. With the Hitman and Total War benchmarks the Intel CPU displays its single-threaded dominance over the current top AMD part, but that disappears with the Vulkan version of Doom and even in GTA V. That said, benchmark performance of Grand Theft Auto has fluctuated since our Ryzen testing, as you can also see with the legacy frame rates of our old 6800K sample.

The biggest gaming performance difference, however, was in the Civilization VI AI benchmark. The average turn time for the AI to make its strategic moves was nearly six seconds faster with the 7900X compared with the eight-core AMD chip.

But that slight overall gaming performance lead is not going to justify spending twice the money to get the extra two cores the Intel i9 offers over the Ryzen CPU. Us gamers just aren’t getting enough extra out of the X-series platform to make it worth serious consideration.

That’s true even when considering the extra overclocking headroom the Intel chips have. I was able to get the 7900X to run with an all-core clockspeed of 4.7GHz without any trouble, delivering the highest Cinebench score I’ve ever seen on our test bench. But that comes at a definite thermal and power cost.

When pushed above 4.5GHz the temperature of the 7900X becomes more than our all-in-one liquid chip-chiller could handle, even with both the pump and fans running as fast as they could go. At 4.7GHz, the CPU package regularly hit the 100°C mark, at which point the processor starts to throttle individual cores to bring the temperature back down. Anything over 4.7GHz and the throttled clockspeed severely tanks, sometimes to below 4GHz.

Intel Core i9 7900X verdict

There has never been a worse time to buy a new high-end CPU. While it’s safe to say that right now the Core i9 7900X is the fastest desktop processor around, that’s in no way an invitation for you to think about buying one.

AMD have confirmed their cheaper 16-core Ryzen Threadripper chip will outperform this first ever Core i9 CPU at launch. Even as I write this, Intel have quietly announced the 2.9GHz base clock of the 12-core i9, which is to sit above this in their new X-series CPU stack.

This is actually where Intel have backed themselves into a corner by clocking the 7900X so impressively high. The 4.3GHz Turbo the chip happily runs at is way ahead of what they’re going to be able to do when Intel have to jam another two cores into the package, let alone the extra silicon needed to hit 14, 16, and 18 CPU cores.

More silicon in the same area means more heat and we know temps start to soar as higher frequencies are used. I can’t see the 12-core i9 7920X being able to hit 4.3GHz on an all-core Turbo out of the box, which will make the more expensive chip slower in a good few metrics. Intel have announced this 2.9GHz base clock for the 12-core chip, and I wouldn’t be surprised to see a Turbo of around 3.8GHz at most.

But, with all the competition noise around, it’s easy to forget that, only last year, a much slower, equivalent Intel CPU cost $1,700. That’s a massive change in pricing. If it wasn’t for the 16-core AMD processor retailing at the same price, it would’ve seemed like great value for the pro-sumer in desperate need of a lot of super-fast CPU cores. The fact Intel can ship this quicker chip at $700 less shows what a huge leap forward 2017 has been for processor silicon, but also how much Intel have been sandbagging over the last few generations.

I’m also a little nervous of the X-series platform as a whole. I’ve had some weird experiences during testing, there have been a lot of BIOS updates for the different X299 boards we’ve got in the office, and there have been a few instances of scary temperatures being reported in the power componentry of some boards.

The X299 release was a lot earlier than anyone anticipated, and I’m including the motherboard manufacturers in this, too. They will have been told they needed to shave a good couple of months off their X299 production times, and that will have meant rushing through production, and validation, in order to hit the new release schedule.

That will explain why there is such a shortage of boards around at the moment, even this long after the initial launch, and why early BIOSes would brick both CPU and motherboard in some instances.

So yeah, OMFG, that’s a mighty quick ten-core CPU for a lot less than it would’ve cost to get so many Intel cores last year. But you’d have to be an utter masochist to buy one.

www.pcgamesn.com


Смотрите также